Solution to an initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

dv/dt = 9.8 - 0.196v;               v(0) = 48

Solution

To determine the solution to an Initial Value Problem we should first determine the general solution to the differential equation and after that use the initial condition to recognize the precise solution which we are after. Thus, since this is the similar differential equation as we looked at in Illustration 1, we previously have its general solution.

v(t) = 50 + ce-0.196t

Currently, to determine the solution we are after we require identifying the value of c which will give us the solution we are after. To do such we simply plug in the first condition that will provide us an equation we can resolve for c. Thus let's do this as:

48 = v () = 50 + c ⇒ c = -2

Therefore, the actual solution to the Initial Value Problem is.

v(t) = 50  - 2 e-0.196t

A graph of this solution can be observed in the figure above.

Let's do a couple of illustrations which are a little more included.


Related Discussions:- Solution to an initial value problem

Example of linear in - equation - linear algebra, Explain some Examples of ...

Explain some Examples of linear in - Equation, with solution.

Slope-intercept form, Slope-intercept form The ultimate special form of...

Slope-intercept form The ultimate special form of the equation of the line is possibly the one that most people are familiar with.  It is the slope-intercept form.  In this if

Example of linear equations, Example of Linear Equations: Solve the eq...

Example of Linear Equations: Solve the equation 2x + 9 = 3(x + 4). Solution: Step 1. Using Axiom 2, subtract 3x and 9 from both sides of the equation. 2x + 9 = 3(

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Analyze the dynamic path - difference equation, One of the well-known class...

One of the well-known class of models that involve a simple difference equation are models of mean reversion. These models typically take the form yt+1 - yt = -a(yt - μ)where 0

Simplify, X^2 – y^2 – 2y - 1

X^2 – y^2 – 2y - 1

Evaluate inverse tangents , Evaluate following limits. Solution ...

Evaluate following limits. Solution Here the first two parts are actually just the basic limits including inverse tangents and can easily be found by verifying the fol

Permutation, HOW MANY number laying between 100 and 1000 can be formed with...

HOW MANY number laying between 100 and 1000 can be formed with 0,1,2,3,4,5 and also divisible by 5 with distinct digit

Find homeomorphisms - complex root, All numbers refer to exercises (and not...

All numbers refer to exercises (and not "computer exercises") in Gallian. §22: 8, 16, 22, 24, 28, 36. In addition: Problem 1: Let a be a complex root of the polynomial x 6 +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd