Semiconductor equations, Electrical Engineering

Assignment Help:

Semiconductor Equations 

The semiconductor equations that are relating these variables are shown below:

Carrier density:

n = ni exp (EFN - Ei / KT)        (1)

p = ni exp (Ei - EFP / KT)        (2)

In which EFN is the electron quasi Fermi level and EFP is the hole quasi Fermi level. These above 2 equations lead to 

Np = n­i2 exp (EFN - EFP/ KT)   (3)

In equilibrium EFN = EFP = Constant

Current:

There are two mechanism of current; electron current density and hole current density. There are various mechanisms of current flow:

  1. Drift
  2. Diffusion
  3. Thermionic emission
  4. Tunnelling

The final two mechanisms are significant frequently only at the interface of two different materials like a metal-semiconductor junction or a semiconductor-semiconductor junction where the two semiconductors are of dissimilar materials. Tunneling is as well significant in the case of PN junctions in which both sides are heavily doped.

The dominant conduction mechanisms include drift and diffusion in the bulk of semiconductor. The current densities because of these two mechanisms can be written as

JN = qnμNε + qDN dn/dx   (4)

JP = qnμPε + qDP dP/dx   (5)

In which μN and μP are electron and hole mobilities correspondingly and DN, DP are their diffusion constants.

Potential:

The potential and electric field in a semiconductor can be described in the following ways:

  1. Ψ = - EC /q + constant ; ε =  (1/q) (dEc / dX)
  2. Ψ = - EV /q + constant ; ε =  (1/q) (dEV / dX)
  3. Ψ = - Ei /q + constant ; ε =  (1/q) (dEi / dX)
  4. Ψ = - EO /q + constant ; ε =  (1/q) (dEO / dX)

All these definitions are equal and one or the other may be selected on the basis of convenience. The potential is connected to the carrier densities through the Poisson equation: -

2 Ψ / ∂X2 = - q/ε (p-n+ N+D - N-A)      (6)

In which the last two terms present the ionized donor and acceptor density.

 


Related Discussions:- Semiconductor equations

Explain the 8259 microprocessor, Explain the 8259 microprocessor. 82...

Explain the 8259 microprocessor. 8259: The 8259A adds 8 vectored priority encoded interrupts to the microprocessor. This can be expanded to 64 interrupt requests with us

Develop an analog computer simulation diagram, Q. Develop an analog compute...

Q. Develop an analog computer simulation diagram to solve the differential equation with y(0) = 2 and ? y(0) = 0.

Show television waveform, Q. Show television waveform? The television w...

Q. Show television waveform? The television waveform representing one scan is illustrated in Figure. A blanking pulse with a duration of 0.18 of the horizontal - sweep period T

Rahul, in 8085 name the 16 bit registers

in 8085 name the 16 bit registers

Determine the transfer function and driving-point impedance, Q. A filter is...

Q. A filter is a network employed to select one range of frequencies while rejecting all other frequencies. A basic building block often used in integrated-circuit filters is shown

Resonance, i want to plot a system current transfer matrix element vs frequ...

i want to plot a system current transfer matrix element vs frequency curve.how can i draw it?any suggestion.

Boolean, any Boolean function can be realized using multiplexer.(true/false...

any Boolean function can be realized using multiplexer.(true/false).

Determine the input current and input voltage, Q. A 100-kVA, 2300:230-V, 60...

Q. A 100-kVA, 2300:230-V, 60-Hz, single-phase transformer has the following parameters: R 1 = 0.30 , R 2 = 0.003 , RC 1 = 4.5k, X 1 = 0.65 , X 2 = 0.0065 , and Xm 1 = 1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd