Self adaptive ga, Basic Statistics

Assignment Help:

During the execution of the search process, the whole populations are classified into subgroups by sufficiently analyzed the individuals' state. Each individual in a different subset is assigned to the appropriate attribute (probabilities of crossover and mutation, pc,

pm). Self-adaptive update the subgroups and adjust the control parameters, which are considered to be an optimal balance between exploration and exploitation. The empirical values and negative feedback technique are also used in parameters selection, which relieve the burden of specifying the parameters values. The new method is tested on a set of well-known benchmark test functions.

1. Randomly select an initial population.

2. Dynamically classify the population into subgroups. The individuals will be divided into three categories good, moderate and bad according to their fitness value.

3. Adaptively adjust the parameters. The probability of crossover and mutation are also classified in three ranks according to the categories of individuals. To different subgroups, different values of pc and pm are assigned to the relative elements. The pc and pm of an individual classified as "bad" is randomly chosen at a relative high level. The pc and pm of an individual classified as "good" is randomly chosen at a relative low level. The medium subgroup keeps the balance between exploration and exploitation so the parameters of crossover and mutation are distributed at a moderate range.

4.  The parameters should be adjusted using the negative feedback technique.

pm,g+1 =

pm,g + rand (0, 1) · (pm,max - pm,g)

ifmeanfitg ≥ meanfitg-1

pm,min + rand (0, 1) · (pm,g - pm,min)

otherwise

pc,g+1 =

pc,g + rand (0, 1) · (pc,max - pc,g)

ifmeanfitg ≥ meanfitg-1

pc,min + rand (0, 1) · (pc,g - pc,min)

otherwise

Calculate the difference of the mean value of the successive generation, if the difference greater than or equal to zero that means the searching result deteriorated, new probabilities of crossover and mutation should be increased, otherwise the probabilities should be decreased. Update the population by the adaptive adjust parameters until the termination criteria satisfy.

5.Framework of the Simple Adaptive GA

Initialize population randomly

Classify into 3 subgroups according to the fitness

For 3 groups of individuals, randomly choose pc, pm from relative range of crossover and mutation probabilities to be applied

Evaluate fitness

Do

Sort population by fitness and classify

Renew the operating factors

Evaluate fitness in changed genotypes

Until termination criteria

6. Simulation using bench mark functions

Function Names: Sphere, Schwefel 1.2, Schwefel 2.21, Rosenbrock, Griewank, Ackley, Penalty 1 and Penalty 2

Function Name  Unimodal /Multimodal   Separable/Nonseparable     Regular/irregular

Sphere                         unimodal                     separable                              regular

Schwefel 1.2               unimodal                     nonseparable                           regular

Schwefel 2.21             unimodal                     nonseparable                           irregular

Rosenbrock                 unimodal                     nonseparable                           regular

Griewank                    multimodal                  nonseparable                           regular

Ackley                         multimodal                  nonseparable                           regular

Penalty 1                     multimodal                  nonseparable                           regular

Penalty 2                     multimodal                  nonseparable                           regular


Related Discussions:- Self adaptive ga

Simulate a worm propagation considering no delay, You are required to simul...

You are required to simulate simple worm propagation in a medium-scale network by using discrete-time simulation technique. Assume that in an isolated network with IP address

Find a p-value from a t-test, A random sample of 321 New Jersey and 77 Penn...

A random sample of 321 New Jersey and 77 Pennsylvania fast-food restaurants was selected from those fast-food restaurants in this study.  The restaurants were categorised into two

Replacement theory, who is the mathematician who invented replacement theor...

who is the mathematician who invented replacement theory of operation research

Nucleus Composition, The study of radioactive disintegrations indicates the...

The study of radioactive disintegrations indicates the emission of alpha, beta and gamma particles/rays to be of nuclear origin. Further, study of artificial radioactivity has reve

#piosson ditribution., Ask Suppose that the expected number of phone calls ...

Ask Suppose that the expected number of phone calls that are handel by a switchboard in each second is 5.35. Assume that the distribution of the number of phone calls per second fo

Differance between categorical and dependent variable, Choose a topic that ...

Choose a topic that interests you that you can explore either with the 2006 GSS. You should have one primary "dependent" variable that you are interested in (Y). This variable shou

What is the lm and is curve, Consider an economy specified by the following...

Consider an economy specified by the following:       Y = PE = C + I + G + NX                            (Income identity)       C = 400 + 0.9YD

Working capital, prepare an estimate of working capital requirements from t...

prepare an estimate of working capital requirements from the following information 1. project annual sales 1,00000/- 2. selling price Rs. 8/unit 3.percentage of net profit on sale

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd