Rules of integration, Mathematics

Assignment Help:

Rules of Integration

1. If 'k' is a constant then

∫Kdx

=  kx + c

2. In the above rule, if k = 1 then

∫dx  (this means integral of 1 which is written as dx and not 1 dx)

         = x + c

3. 

∫xndx = 52_rules of integration.png + c

*

- 1

The integral of 1/x or x-1 is

∫x1. dx =  ln x + c  x > 0

 

         The condition x > 0 is added because only positive numbers have logarithms.

4. 

∫akxdx =   1403_rules of integration1.png

+ c where 'a' and 'k' are constants.

 

5. 

∫eKxdx = 2443_rules of integration2.png + c since ln e = 1

2317_rules of integration3.png

Functions which differ from each other only by a constant have the same derivative. For example, the function F(x) = 4x + k has the same derivative, F'(x)= 4 = f(x), say, for any infinite number of possible values for k. If the process is reversed, it is clear that  ∫4dx is the indefinite integral for an infinite number of functions differing from each other only by a constant. The constant of integration, mentioned 'c' in the expression for integration earlier, thus represents the value of any constant which was part of the original function but precluded from the derivative by the rules of differentiation.

The graph of an indefinite integral ∫f(x)dx = F(x) + c, where 'c' is unspecified, is a family of curves parallel in the sense that the slope of the tangent to any of them at x is f(x). Specifying 'c' gives a single curve whereas changing 'c' shifts the curve vertically. If c = 0, the curve begins at the origin.

For example,  ∫4d(x)  = 4x + c. For c = -7, -3, 0, 1 and 4 the graph of this integral is given below.

Figure 

1868_rules of integration4.png

Related Discussions:- Rules of integration

Product rule (f g)' = f ' g + f g', Product Rule: (f g)′ = f ′ g + f g′ ...

Product Rule: (f g)′ = f ′ g + f g′ As with above the Power Rule, so the Product Rule can be proved either through using the definition of the derivative or this can be proved

Find no. of non negative integral solutions, Find no. of non negative integ...

Find no. of non negative integral solutions x 1 +x 2 +x 3 +4x 4 =20 Solution)  140. Break them into prime factors . Put 4 = 2^2 and every variable will have factors in 2,3,5 with

Fermats last theorem, Explain Fermats Last Theorem? How to solve problems u...

Explain Fermats Last Theorem? How to solve problems under Fermats Last Theorem?

Find the shortest length of wire needed, A 125-foot tower is located on the...

A 125-foot tower is located on the side of a mountain that is inclined at 32° to the horizontal. A guy wire is to be fitted to the top of the tower and anchored at a point 55 feet

NUMERABILITY, AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROC...

AFIGURE THIS OUT(3) (14) (17) (20) (25)= 8 WHAT ARE THE PROCEDURES (-)(+)(x)(div) BETWEEN EACH NUMBER TO COME UP WITH 8 ?

Longer- term forecasting, Longer- Term Forecasting Moving averages, ex...

Longer- Term Forecasting Moving averages, exponential smoothing and decomposition methods tend to be utilized for short to medium term forecasting. Longer term forecasting is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd