Revenue and profit functions, Mathematics

Assignment Help:

Now let's move onto the revenue & profit functions.

Demand function or the price function

Firstly, let's assume that the price which some item can be sold at if there is a demand for x units is specified by p (x ) . This function is typically called either the demand function or the price function

Revenue function

Then the revenue function is how much money is made through selling x items and is,

                                                       R ( x ) = x p ( x )

The profit function is then,

P ( x )= R ( x ) - C ( x ) = x p ( x ) - C ( x )

Be careful to not confuse the demand function, p ( x ) - lower case p, & the profit function, P ( x ) - upper case P. Bad notation possibly, but there it is.

marginal revenue function

the marginal revenue function is R′ ( x ) and

Profit function

The marginal profit function is P′ ( x)

and these revel the revenue & profit respectively if one more unit is sold.

Let's take a quick look at an example of using these.

Example  The weekly cost to generate x widgets is specified by

C ( x ) = 75, 000 + 100 x - 0.03x2 + 0.000004 x3            0 ≤ x ≤ 10000

and the demand function for the widgets is specified by,

p ( x ) = 200 - 0.005x                           0 ≤ x ≤ 10000

 Find out the marginal cost, marginal revenue & marginal profit while 2500 widgets are sold and while 7500 widgets are sold. Suppose that the company sells accurately what they produce.

Solution

The first thing we have to do is get all the several functions which we'll require. Following are the revenue & profit functions.

R ( x ) = x ( 200 - 0.005x ) =200 x - 0.005x2

P ( x ) = 200x - 0.005x2 - (75, 000 + 100x - 0.03x2+ 0.000004x3 )

= -75, 000 + 100 x + 0.025x2 - 0.000004 x3

Now, all the marginal functions are following,

C′ ( x ) = 100 - 0.06 x + 0.000012 x2

R′ ( x ) =200 - 0.01x

P′ ( x ) = 100 + 0.05x - 0.000012x2

The marginal functions while 2500 widgets are sold are following,

C′ ( 2500) = 25        R′ ( 2500) = 175                  P′ ( 2500) = 150

The marginal functions while 7500 are sold are following

C′ (7500) = 325           R′ (7500) = 125               P′ (7500) = -200

Therefore, upon producing & selling the 2501st widget it will cost the company approximately $25 to generate the widget and they will illustrates an added $175 in revenue and $150 in profit.

Alternatively while they generate and sell the 7501st widget it will cost an additional $325 and they will attain an extra $125 in revenue, however lose $200 in profit.


Related Discussions:- Revenue and profit functions

Polynomials, sum of zero of polynomial x2-2x+1is equal to sum of zero of po...

sum of zero of polynomial x2-2x+1is equal to sum of zero of polynomial x3-2x+x then find the product of all the three zero of the second polynomial

Determine y inverse for x2 + y 4 = 10, Determine  y′′  for           ...

Determine  y′′  for                                x 2 + y 4   = 10 Solution: We know that to get the second derivative we required the first derivative and to get that w

100 day countdown, subtract 20and 10,and then mutiply by 5

subtract 20and 10,and then mutiply by 5

Evaluate limit in l''hospital''s rule form, Evaluate the below given limit....

Evaluate the below given limit. Solution Note as well that we actually do have to do the right-hand limit here. We know that the natural logarithm is just described fo

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Eliminate the parameter from the set of parametric equations, Eliminate the...

Eliminate the parameter from the subsequent set of parametric equations. X = t 2 + t Y = 2t - 1 Solution: One of the very easy ways to eliminate the parameter is to

Find the probability , 1.  What is the probability that the two beverages w...

1.  What is the probability that the two beverages will be of the same kind? 2.  What is the probability that the two beverages will be different? 3.  What is the probability

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd