Revenue and profit functions, Mathematics

Assignment Help:

Now let's move onto the revenue & profit functions.

Demand function or the price function

Firstly, let's assume that the price which some item can be sold at if there is a demand for x units is specified by p (x ) . This function is typically called either the demand function or the price function

Revenue function

Then the revenue function is how much money is made through selling x items and is,

                                                       R ( x ) = x p ( x )

The profit function is then,

P ( x )= R ( x ) - C ( x ) = x p ( x ) - C ( x )

Be careful to not confuse the demand function, p ( x ) - lower case p, & the profit function, P ( x ) - upper case P. Bad notation possibly, but there it is.

marginal revenue function

the marginal revenue function is R′ ( x ) and

Profit function

The marginal profit function is P′ ( x)

and these revel the revenue & profit respectively if one more unit is sold.

Let's take a quick look at an example of using these.

Example  The weekly cost to generate x widgets is specified by

C ( x ) = 75, 000 + 100 x - 0.03x2 + 0.000004 x3            0 ≤ x ≤ 10000

and the demand function for the widgets is specified by,

p ( x ) = 200 - 0.005x                           0 ≤ x ≤ 10000

 Find out the marginal cost, marginal revenue & marginal profit while 2500 widgets are sold and while 7500 widgets are sold. Suppose that the company sells accurately what they produce.

Solution

The first thing we have to do is get all the several functions which we'll require. Following are the revenue & profit functions.

R ( x ) = x ( 200 - 0.005x ) =200 x - 0.005x2

P ( x ) = 200x - 0.005x2 - (75, 000 + 100x - 0.03x2+ 0.000004x3 )

= -75, 000 + 100 x + 0.025x2 - 0.000004 x3

Now, all the marginal functions are following,

C′ ( x ) = 100 - 0.06 x + 0.000012 x2

R′ ( x ) =200 - 0.01x

P′ ( x ) = 100 + 0.05x - 0.000012x2

The marginal functions while 2500 widgets are sold are following,

C′ ( 2500) = 25        R′ ( 2500) = 175                  P′ ( 2500) = 150

The marginal functions while 7500 are sold are following

C′ (7500) = 325           R′ (7500) = 125               P′ (7500) = -200

Therefore, upon producing & selling the 2501st widget it will cost the company approximately $25 to generate the widget and they will illustrates an added $175 in revenue and $150 in profit.

Alternatively while they generate and sell the 7501st widget it will cost an additional $325 and they will attain an extra $125 in revenue, however lose $200 in profit.


Related Discussions:- Revenue and profit functions

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

Midpoint rule - approximating definite integrals, Midpoint Rule - Approxima...

Midpoint Rule - Approximating Definite Integrals This is the rule which should be somewhat well-known to you. We will divide the interval [a,b] into n subintervals of equal wid

Evaluate integrals, Evaluate following integrals.  (a) ∫ 3e x + 5 cos x...

Evaluate following integrals.  (a) ∫ 3e x + 5 cos x -10 sec 2   x dx  (b) ( 23/ (y 2 + 1) + 6 csc y cot y + 9/ y dy Solution (a)    ∫ 3e x + 5 cos x -10 sec 2 x

common divisors greater than one, Let R be the relation on Z + defined by...

Let R be the relation on Z + defined by aRb iff gcd(a; b) = 1 (that is, a and b have no common divisors greater than one). Explain whether R is reflexive, irreflexive, symmetri

Differntial equation, (3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

(3x+2)^2 d^2y/dx^2+3(3x+2)dy/dx-36y=3x^2+4x+1

Euler equations, Euler Equations - Series Solutions to Differential Equ...

Euler Equations - Series Solutions to Differential Equations In this section we require to look for solutions to, ax 2 y′′ + bxy′ + cy = 0 around x0  = 0. These ki

Determine multiplications required to obtain the determinant, Don't count t...

Don't count the number of divisions. Do not use asymptotic notation, instead provide exact answers. (i) What is the maximum number of multiplications required to solve a system

Hypothesis test, Describe, in your own words, the following terms and give ...

Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd