Regression equations - correlation regression analysis, Operation Research

Assignment Help:

Regression Equations

The   regression equations express the regression line. As there are two regression lines so there  are two  regression  equations. The regression equation X and Y describes the variation in the values of  X for  the  given  changes  in Y. And used for estimating the values  of X for the  given  value of Y. Similarly  the regression  equation  Y and X describes the variation  in the  values  of Y for the  given  changes in X  and is  used  for estimating  the  value of Y for the  given value of X.

Regression Equation of Y on X

The regression equation of Y on  X is  expressed  as follows:

Y= a + b X

It may be noted that in  this equation y is a dependent  variables i , its  values depends  on X....X is  independent  variables  i, e, we  can take a given values  of X  and compute the values of  Y.

A is  y intercept   because its  values is  the point  at which the regression  line cross the  Y axis  that is  the vertical  axis b is the slope  of line. It  represents  changes  in Y  variable  for a unit  change in  X variable.

A and  b in the equation  are called  numerical  constants  because  for any  given  straight line  their  value  does  not  change.

If the  values  of the  constants  a and b  are obtained the line is  completely  determined. But  the  question is how  to obtain  these  values. The answer is  provided by the  method of least squares which  states  that the  line should  be drawn  through the plotted points  in such  a manner that  the sum  of the square of the deviations of  the actual y values from the  computed Y values  is the least or in  other words in order  to obtain a line which  fits  the points  best ∑ ( Y - Y c)2 should  be minimum. Such  a line is  known  as the  line  of best fit.

A straight  line  fitted by  least  squares  has the followings  characteristics;

a.It gives the best fit to  data in  the since that it  make the sum  of the  squared deviations  from the  line  ( Y- Y c)2 smaller than  they would  be from  any other  straight  line. This  property  accounts for the name least squares.

b.The deviation  above  the line  equal  those  below the line  on the average. This mean  that the  total  of the  positive  deviations is  zero or ∑( Y-Yc)= 0

c. The straight line goes  through  the overall  mean of the  data( S Y).

d. When the  data  represent  a sample  from a large  population  the least  squares  lien is a best estimate of the population  regression line.

With a little  algebra and differential  calculus it  can be shown that the followings two equations if  solved simultaneously will yield  values of  the parameters a and b  such that  the least squares requirement  is fulfilled:

∑Y = Na + b ∑X

∑XY = a ∑X + b ∑X2

These equations  are usually  called  the normal  equations. In the equations ∑X ∑XY, ∑X22, indicate  totals  which  are computed from  the observed pairs of values  of two  variables  X and y  to which  the least  squares estimating.


Related Discussions:- Regression equations - correlation regression analysis

Chi square test goodness of fit- hypothesis testing, Chi Square  Test Good...

Chi Square  Test Goodness of Fit Chi square test  can be used to find out  how well the  theoretical distribution fit  with the  empirical distribution  of observed distribut

Usefulness of correlation - correlation regression analysis, Usefulness of ...

Usefulness of Correlation 1.Correlation  is very  useful  to economists  to study  the relationship  between  variables  like  price  and quantity  demanded. To businessmen it

LINEAR PROGRAMMING, Meaning of Linear programming problem and explanation o...

Meaning of Linear programming problem and explanation of graphical method of solving Linear Programming Problem

LINEAR PROGRAMMING, A DRUG MANUFACTURER produces 2 products X1 and X2.X1 ne...

A DRUG MANUFACTURER produces 2 products X1 and X2.X1 needs 2 hours on machine A AND 2 HOURS ON MACHINE B.X2 needs 3 hours on machine A and 1 hour on machine B.If machine A can run

Linear pograming, application area of linear programing problem

application area of linear programing problem

Operation research, different classification of models in operation researc...

different classification of models in operation research

De, describe the similarities and differences of transportation and linear ...

describe the similarities and differences of transportation and linear programing methods

LPP, . A paper mill produces two grades of paper viz., X and Y. Because of ...

. A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper

Fromulation of LPP, A paper mill produces two grades of paper viz., X and ...

A paper mill produces two grades of paper viz., X and Y because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons ot grade Y paper in

Explain system control and security tools, 1. Explain the effects that MIS,...

1. Explain the effects that MIS, DSS, CRM and ERP have on organizational communication and decision making to increase productivity and efficiency in an increasingly competitive bu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd