Reduce the rational expression to lowest terms, Mathematics

Assignment Help:

Reduce the following rational expression to lowest terms.

                                    x2 - 2 x - 8/ x2 - 9 x + 20

Solution

When reducing a rational expression to lowest terms the first thing that we will do is factor both the numerator and denominator as much as possible. That ought to always be the first step in these problems.

Also, the factoring in this section, & all successive section for that matter, will be done with no explanation. It will be supposed that you are capable of doing and/or verifying the factoring on your own.  In other terms, ensure that you can factor!

x2 - 2x - 8 /x2 - 9 x + 20

First we'll factor things out as fully as possible. Remember that we can't cancel out anything at this instance in time as every term contain a "+" or a "-" on one side of it! We've got to factor

x2 - 2 x - 8 /x2 - 9 x + 20 = ( x - 4) ( x + 2)/( x - 5) (x - 4)

At this instance we can see that we've got a common factor in the numerator and the denominator both and so we can cancel out the x-4 from both. Doing this gives,

                                  x2 - 2 x - 8 /x2 - 9 x + 20 = x + 2 /x - 5

It is also all the farther that we can go.  Nothing else will cancel out and thus we have decreased this expression to lowest terms.

 

In other terms, a minus sign in front of a rational expression can be moved over the whole numerator or whole denominator if this is convenient to do that.  However, we ought to be careful with this.  Let the following rational expression.

                                                              - x + 3 /x + 1

In this case the "-" onto the x can't be moved to the front of the rational expression as it is only on the x.  To move a minus sign to the front of a rational expression it has to be times the whole numerator or denominator.  Thus, if we factor a minus out of the numerator then we could move it into the front of the rational expression as follows,

- x + 3 /x + 1 = - ( x - 3) / x + 1= -(x-3)/(x+1)

Here, the moral is that we have to be careful with moving minus signs around in rational expressions.

Now we need to move into adding, subtracting, multiplying & dividing rational expressions. Let's begin with multiplying & dividing rational expressions. The general formulas are such as,

 (a/b) ⋅ (c /d)= ac /b d 

 (a/b) /(c /d)=(a/b)÷(c/d)=(a/b).(d/c)

Note the two distinct forms for mentioning division.  We will employ either as required so ensure you are familiar with both. Notice as well that to do division of rational expressions all that we have to do is multiply the numerator by the reciprocal of the denominator (that means the fraction along with the numerator & denominator switched).

There are a couple of special cases of division that we have looked at.  Generally above both the numerator and the denominator of the rational expression where fractions, though, what if one of them isn't fraction.  Thus let's look at the following cases.

                                                       a/(c/d)          (a/b)/c        

Initially Students frequently make mistakes with these. To properly deal with these we will turn the numerator (first case) or denominator (second case) into fraction and then do the general division on them.

a/(c/d)=(a/1)/(c/d)=(a/1).(d/c)=(ad/c)

 (a/b)/c =(a/b)/(c/1)=(a/b).(1/c)=(a/bc)

Be careful with these cases. It is simple to make a mistake with this case and do the division incorrectly.


Related Discussions:- Reduce the rational expression to lowest terms

Solve 6 sin ( x/2)= 1 on [-20, Solve 6 sin ( x/2)= 1 on [-20,30] Soluti...

Solve 6 sin ( x/2)= 1 on [-20,30] Solution Let's first work out calculator of the way since that isn't where the difference comes into play. sin( x/2)= 1/6   ⇒x/2= sin

Objective type , when is the trnscribing process of data preparation irrele...

when is the trnscribing process of data preparation irrelevant ? a)CAPI b) mall panel c) in home interview d) all of them

Linear approximations, Linear Approximations In this section we will l...

Linear Approximations In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to

Profit and loss, a shopkeeper buys two cameras at the same price . he sells...

a shopkeeper buys two cameras at the same price . he sells one camera at a profit of 18% and the other at a price of 10% less than the selling price of the first camera. find his p

The shortest distance among the line y-x=1 and curve x=y^2, Any point on pa...

Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2

What is the area covered through the motion of the fan, The arm of a ceilin...

The arm of a ceiling fan measures a length of 25 in. What is the area covered through the motion of the fan blades while turned on? (π = 3.14) The ceiling fan follows a circula

Find the volume of ice cream cone, An ice-cream cone has a hemispherical to...

An ice-cream cone has a hemispherical top. If the height of the cone is 9 cm and base radius is 2.5 cm, find the volume of ice cream cone.

Unitary method, what is history of Unitary method

what is history of Unitary method

Linear Systems, Find the solution to the following system of equations usin...

Find the solution to the following system of equations using substitution:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd