Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that a simple graph is connected if and only if it has a spanning tree.
Ans: First assume that a simple graph G has a spanning tree T. T consists of every node of G. By the definition of a tree, there is a path among any two nodes of T. As T is a subgraph of G, there is a path among each pair of nodes in G. Hence G is connected.
Here now let G is connected. If G is a tree then nothing to prove. If G is not a tree, it must consist of a simple circuit. Let G has n nodes. We can choose (n - 1) arcs from G in such type of a way that they not form a circuit. It results into a subgraph comprising all nodes and only (n - 1) arcs. So by definition this subgraph is a spanning tree.
With reference to Fig. 1(a) show that the magnification of an object is given by M=SID/SOD. With reference to Fig. 1(b) show that the size of the penumbra (blur) f is given by f
Find the solution to the subsequent IVP. ty' - 2y = t 5 sin(2t) - t 3 + 4t 4 , y (π) = 3/2 π 4 Solution : First, divide by t to find the differential equation in the accu
I would like to know what a symbol in my homework means?
I need help in assignment of stats? Please give me assist in my stats exam.
1+1=?
Related problems,working rule,defnitions
q5
HISTORY OF UNITARY METHOD
v=u+at s=ut+1/2at^2
a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd