Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that a simple graph is connected if and only if it has a spanning tree.
Ans: First assume that a simple graph G has a spanning tree T. T consists of every node of G. By the definition of a tree, there is a path among any two nodes of T. As T is a subgraph of G, there is a path among each pair of nodes in G. Hence G is connected.
Here now let G is connected. If G is a tree then nothing to prove. If G is not a tree, it must consist of a simple circuit. Let G has n nodes. We can choose (n - 1) arcs from G in such type of a way that they not form a circuit. It results into a subgraph comprising all nodes and only (n - 1) arcs. So by definition this subgraph is a spanning tree.
Dot Product- Vector The other topic for discussion is that of the dot product. Let us jump right into the definition of dot product. There is given that the two vectors a
integrate sin(x) dx
how to find the indicated term?
Maximize P=3x+2y Subject to x+y =6 x =3 x =0,y =0
how can we represent this mathematical equation on a graph y=2x-1
1+1
Negative four is multiplied through the quantity x + 8. If 6x is then added to this, the output is 2x + 32. What is the value of x? twice the quantity x + 6 is divided by negative
Factors in Denominator and Partial Fraction Decomposition Factor in denominator Term in partial fraction decomposition ax + b
I need help for Solving Equations by Completing the Square Method, can anybody help me out for this?
wha is intergration?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd