Prove that a simple graph is connected, Mathematics

Assignment Help:

Prove that a simple graph is connected if and only if it has a spanning tree.   

Ans: First assume that a simple graph G has a spanning  tree T.  T consists of every node of G.  By the definition of a tree, there is a path among any two nodes of T.  As T is a subgraph of G, there is a path among each pair of nodes in G. Hence G is connected.   

Here now let G is connected. If G is a tree then nothing to prove. If G is not a tree, it must consist of a simple circuit. Let G has n nodes. We can choose (n - 1) arcs from G in such type of a way that they not form a circuit. It results into a subgraph comprising all nodes and only (n - 1) arcs. So by definition this subgraph is a spanning tree.


Related Discussions:- Prove that a simple graph is connected

Linear programming, Consider the following linear programming problem: M...

Consider the following linear programming problem: Min (12x 1 +18x 2 )             X 1 + 2x 2 ≤ 40             X 1 ≤ 50             X 1 + X 2 = 40             X

Developing pre-number concepts, DEVELOPING PRE-NUMBER CONCEPTS :  Previous...

DEVELOPING PRE-NUMBER CONCEPTS :  Previously you have read how children acquire concepts. You know that, for children to grasp a concept, they must be given several opportunities

Find quadratic equation using the quadratic formula, Find quadratic equatio...

Find quadratic equation using the Quadratic Formula: Solve the subsequent quadratic equation using the Quadratic Formula. 4x 2 + 2 = x 2 - 7x: Solution: Step 1.

Discrete, For each of these arguments determine whether the argument is cor...

For each of these arguments determine whether the argument is correct or incorrect and explain why. a) Everyone enrolled in the university has lived in a dormitory. Mia has never l

Puzzle, 0+50x1-60-60x0+10

0+50x1-60-60x0+10

Rational and irrational numbers, RATIONAL NUMBERS All numbers of the ty...

RATIONAL NUMBERS All numbers of the type p/q where p and q are integer and q ≠0, are known as rational. Thus  it can be noticed that every integer is a rational number

Integerts, how do u add and subtract integers

how do u add and subtract integers

Prove - digraph of a partial order has no cycle more than 1, Prove that the...

Prove that the Digraph of a partial order has no cycle of length greater than 1. Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd