Properties for exponents, Mathematics

Assignment Help:

The next thing that we must acknowledge is that all of the properties for exponents. This includes the more general rational exponent that we haven't looked at yet.

Now the properties of integer explore are valid for this section also then we can see how to deal with the more general rational exponent. In fact there are two different ways of dealing along with them as we'll see.  Both of the methods involve via property 2 from the previous section.  For reference reason this property is,

                                                                  (an )m  = anm

Thus, let's see how to deal along with a general rational exponent.  First we will rewrite the exponent as follows.

                                                  b m /n   = b(1/n) (m)

In other terms we can think of the exponent like a product of two numbers.  We will now use the exponent property illustrated above.  Though, we will be using it in the opposite direction than what we did in the earlier section.  Also, there are two ways to do it.  Here they are following,

b m /n  = ( b 1/n )          Or                             b m/ n   =(bm )1/n

By using either of these forms now we can evaluate some more complicated expressions


Related Discussions:- Properties for exponents

How to dividing rational expressions, How to Dividing Rational Expressions ...

How to Dividing Rational Expressions ? To divide two fractions, or rational expressions, keep in Mind that division is the same as multiply by the Reciprocal of the second fra

Geometric interpretation of the cross product, Geometric Interpretation of ...

Geometric Interpretation of the Cross Product There is as well a geometric interpretation of the cross product.  Firstly we will let θ be the angle in between the two vectors a

Limit, limit x APProaches infinity (1+1/x)x=e

limit x APProaches infinity (1+1/x)x=e

Geometric applications to the cross product, Geometric Applications to the ...

Geometric Applications to the Cross Product There are a so many geometric applications to the cross product also.  Assume we have three vectors a → , b → and c → and we make

Formulas of surface area - applications of integrals, Formulas of Surface A...

Formulas of Surface Area - Applications of integrals S = ∫ 2Πyds          rotation about x-axis S = ∫ 2Πxds          rotation about y-axis Where, ds = √ 1 + (1+ (dy /

Thinking mathematically-why learn mathematics, THINKING MATHEMATICALLY :  ...

THINKING MATHEMATICALLY :  Have you ever thought of what mental processes you are going through when you are solving a mathematical problem? Why don't you try the following proble

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd