Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The next thing that we must acknowledge is that all of the properties for exponents. This includes the more general rational exponent that we haven't looked at yet.
Now the properties of integer explore are valid for this section also then we can see how to deal with the more general rational exponent. In fact there are two different ways of dealing along with them as we'll see. Both of the methods involve via property 2 from the previous section. For reference reason this property is,
(an )m = anm
Thus, let's see how to deal along with a general rational exponent. First we will rewrite the exponent as follows.
b m /n = b(1/n) (m)
In other terms we can think of the exponent like a product of two numbers. We will now use the exponent property illustrated above. Though, we will be using it in the opposite direction than what we did in the earlier section. Also, there are two ways to do it. Here they are following,
b m /n = ( b 1/n ) Or b m/ n =(bm )1/n
By using either of these forms now we can evaluate some more complicated expressions
Proof of Root Test Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs. As well n
Linear Approximation Method This is a rough and ready method of interpolation and is best used when the series moves in predicted interval
Project part A, part B, part C
use the simplex method to solve the following lp problem. max z = 107x1 + x2 + 2x3 subject to 14x1 + x2 - 6x3 + 3x4 = 7 16x1 + x2 - 6x3 3x1 - x2 - x3 x1,x2,x3,x4 > = 0
An integer is chosen at random from the first two hundreds digit. What is the probability that the integer chosen is divisible by 6 or 8. (Ans : 1/4 ) Ans:
-3+4 #Minimum 100 words accepted#
Function of a Function Suppose y is a function of z, y = f(z) and z is a function of x, z = g(x)
how can a curve be divided in three equal part?
If the difference among the squares of two consecutive integers is 15 find out the larger integer. Let x = the lesser integer and let x + 1 = the greater integer. The sentence,
From an aero plane vertically above a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aero plane are observed
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd