Properties for exponents, Mathematics

Assignment Help:

The next thing that we must acknowledge is that all of the properties for exponents. This includes the more general rational exponent that we haven't looked at yet.

Now the properties of integer explore are valid for this section also then we can see how to deal with the more general rational exponent. In fact there are two different ways of dealing along with them as we'll see.  Both of the methods involve via property 2 from the previous section.  For reference reason this property is,

                                                                  (an )m  = anm

Thus, let's see how to deal along with a general rational exponent.  First we will rewrite the exponent as follows.

                                                  b m /n   = b(1/n) (m)

In other terms we can think of the exponent like a product of two numbers.  We will now use the exponent property illustrated above.  Though, we will be using it in the opposite direction than what we did in the earlier section.  Also, there are two ways to do it.  Here they are following,

b m /n  = ( b 1/n )          Or                             b m/ n   =(bm )1/n

By using either of these forms now we can evaluate some more complicated expressions


Related Discussions:- Properties for exponents

How to dealing with exponents on negative bases, How to Dealing With Expone...

How to Dealing With Exponents on Negative Bases ? Exponents work just the same way on negative bases as they do on positive ones: (-2)0 = 1 Any number (except 0) raised to the

Montel''s Theorem, In 5 pages, please try to prove Theorem 3 based on Monte...

In 5 pages, please try to prove Theorem 3 based on Montel''s Theorem. please use "Latex" Knuth Donald to write this paper. It is known that Theorem 3 on page 137 of the attached

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

George worked from 7:00 am to 3:30 pm how much he earn, George worked from ...

George worked from 7:00 A.M. to 3:30 P.M. with a 45-minute break. If George earns $10.50 per hour and does not obtain paid for his breaks, how much will he earn? (Round to the near

Find the perimeter and the area of the shaded portion, The given figure con...

The given figure consists of four small semicircles and two big semicircles.  If the smaller semicircles are equal in radii and the bigger semicircles are also equal in radii, find

Decimals, how to multiply 8654.36*59

how to multiply 8654.36*59

Classification-developing pre-number concepts, Classification :  As you kn...

Classification :  As you know, classification (also called grouping) involves putting together things that have some characteristic in common. We can say that a child is able to c

Statistics, do we calculate midpoints from classes or from class boundaries...

do we calculate midpoints from classes or from class boundaries

Example of hcf, Example  Find the Highest Common Factor of 54, 72...

Example  Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd