Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of Sum/Difference of Two Functions : (f(x) + g(x))′ = f ′(x) + g ′(x)
It is easy adequate to prove by using the definition of the derivative. We will start with the sum of two functions. Firstly plug the sum in the definition of the derivative and rewrite the numerator a bit.
(f(x) + g(x))' = limh→0 (f(x + h) + g(x + h) - (f(x) + g(x)))/h
= limh→0 (f(x + h) - f(x) + g(x + h) - g(x))/h
Then, break up the fraction in two pieces and recall the limit of a sum is the total of the limits. By using this fact we consider that we end-up with the definition of the derivative for all of the two functions.
(f(x) + g(x))' = limh→0 (f(x + h) - f(x))/h + limh→0 (g(x + h) - g(x))/h
= f'(x) + g'(x)
The proof of the difference of two functions in nearly the same therefore we'll provide this here without any clarification.
(f(x) + g(x))' = limh→0 (f(x + h) - g(x + h) - (f(x) - g(x)))/h
= limh→0 (f(x + h) - f(x) - (g(x + h) - g(x))/h
= limh→0 ((f(x + h) - f(x))/h) - ((g(x + h) - g(x))/h)
= f'(x) - g'(x)
find inverse of [1 2 3 2 4 5 3 5 6]
detail on identity function
Combined mean Assume m be the combined mean Assume x 1 be the mean of first sample Assume x 2 be the mean of the second sample Assume n 1 be the size of the 1 st
# In a two-digit, if it is known that its unit''s digit exceeds its ten''s digit by 2 and that the product of the given number and the sum of its digits is equal to 144, then the
While we first looked at mechanical vibrations we looked at a particular mass hanging on a spring with the possibility of both a damper or/and external force acting upon the mass.
Finding the Equation of a line, Given a Slope and a Point ? Find the equation of a line with slope m = 2, which passes through the point (-1, -3). Solution: Use the po
a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit
Systems of Equations Revisited We require doing a quick revisit of systems of equations. Let's establish with a general system of equations. a 11 x 1 + a 12 x 2 +......
some basics problems to work
Peter was 60 inches tall on his thirteenth birthday. By the time he turned 15, his height had increased 15%. How tall was Peter when he turned 15? Find 15% of 60 inches and add
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd