Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Probability - Applications of integrals
In this final application of integrals that we'll be looking at we are going to look at probability. Previous to actually getting into the applications we require to get a couple of definitions out of the way.
Assume that we wish to look at the age of a person, height of a person, amount of time spent waiting in line, or maybe the lifetime of a battery. Every quantity have values that will range over an interval of integers. Due to this these are termed as continuous random variables. Continuous random variables are frequently presented by X.
Each continuous random variable, X, has a probability density function, f(x).Probability density functions that satisfy the following conditions.
1. f (x) > 0 for all x
2. ∫∞ -∞ f (x) dx = 1
Probability density functions can be employed to find out the probability that a continuous random variable lies among two values, say a and b.
This probability is represented by P (a < X < b) and is illustrated by,
P (a < X < b)
=∫ba f(x) dx
#question.Find the slope of the line that passes through (7, 3) and (9, 6). Simplify your answer and write it as a proper fraction, improper fraction, or integer. .
eqivalentfraction.
Explain the Absorbing States of a markov chain.
The value of K for (k+1)x^2-2(k-1)x+1 = 0 has real and equal roots.
Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice
Example Multiply 3x 5 + 4x 3 + 2x - 1 and x 4 + 2x 2 + 4. The product is given by 3x 5 . (x 4 + 2x 2 + 4) + 4x 3 . (x 4 + 2x 2 + 4) + 2x .
Find the normalized differential equation which has {x, xex} as its fundamental set
how to evaluate the sums
Your grandparents gave you a gift of R2 000 on your 16th birth day. You want to invest the money in an account over four years. You have an option of investing the R2 000 at 8% per
Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have, f ( x )≤ h (
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd