Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

MTB > let c33=loge(c20)

MTB > let c34=loge(c7)

MTB > let c35=loge(c8)

MTB > let c36=loge(c9)

MTB > let c37=loge(c10)

C33 = lnsqres

C34 = lntotexp

C35 = lnincome

C36 = lnage

C37 = lnnk

 

Regression Analysis: lnsqres versus lntotexp

The regression equation is

lnsqres = - 5.41 - 0.155 lntotexp

 

Predictor     Coef  SE Coef      T      P

Constant   -5.4069   0.6430  -8.41  0.000

lntotexp   -0.1550   0.1420  -1.09  0.275

 

S = 2.15075   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     5.515  5.515  1.19  0.275

Residual Error  1517  7017.227  4.626

Total                1518  7022.743

Since β1 ≠ 0 and is 0.155, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

 

Regression Analysis: lnsqres versus lnincome

The regression equation is

lnsqres = - 5.77 - 0.070 lnincome

 

Predictor     Coef  SE Coef      T      P

Constant   -5.7687   0.7111  -8.11  0.000

lnincome   -0.0698   0.1465  -0.48  0.634

 

S = 2.15143   R-Sq = 0.0%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     1.050  1.050  0.23  0.634

Residual Error  1517  7021.693  4.629

Total                1518  7022.743

Since β1 ≠ 0 and is 0.070, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnage

The regression equation is

lnsqres = - 7.23 + 0.315 lnage

 

Predictor     Coef  SE Coef      T      P

Constant   -7.2276   0.9125  -7.92  0.000

lnage         0.3155   0.2563   1.23  0.219

 

S = 2.15052   R-Sq = 0.1%   R-Sq(adj) = 0.0%

 

Analysis of Variance

Source                DF        SS     MS     F      P

Regression          1      7.007  7.007  1.52  0.219

Residual Error    1517  7015.736  4.625

Total                  1518  7022.743

Since β1 ≠ 0 and is 0.315, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnnk

The regression equation is

lnsqres = - 5.99 - 0.281 lnnk

Predictor     Coef        SE Coef           T      P

Constant   -5.98771  0.08819  -67.89  0.000

lnnk           -0.2812   0.1631   -1.72  0.085

 

S = 2.14949   R-Sq = 0.2%   R-Sq(adj) = 0.1%

Analysis of Variance

Source            DF        SS          MS            F      P

Regression      1       13.738    13.738  2.97  0.085

Residual Error 1517  7009.004  4.620

Total               1518  7022.743

Since β1 ≠ 0 and is 0.281, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

MTB > # lntotexp is significant and estimate of beta/2 is -0.155/2 or -0.775


Related Discussions:- Parks test

SCATTER DIAGRAM, MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

MEANING ,IMPORTANCE AND RELEAVANCE OF SCATTER DIAGRAM

Exponential order statistics model, The model which arises in the context o...

The model which arises in the context of estimating the size of the closed population where individuals within the population could be identified only during some of the observatio

Conditional logistic regression, Conditional logistic regression : The form...

Conditional logistic regression : The form of logistic regression designed to work with the clustered data, such as data including matched pairs of the subjects, in which subject-s

Define matching coefficient, Matching coefficient is a similarity coeffici...

Matching coefficient is a similarity coefficient for data consisting of the number of binary variables which is often used in cluster analysis. It can be given as follows    he

Null hypothesis model, The Null Hypothesis - H0: Model does not fit the dat...

The Null Hypothesis - H0: Model does not fit the data i.e. all slopes are equal to zero β 1 =β 2 =...=β k =  0 The Alternative Hypothesis - H1:  Model does fit the data i.e. at

Markov chains.., a shop is selling laptops at regular price and at half pri...

a shop is selling laptops at regular price and at half price.If the laptops are regular price a day they will be at regular price tha day after with proba 2/3, if the laptops are a

Define hazard function, Hazard function : The risk which an individual expe...

Hazard function : The risk which an individual experiences an event in a small time interval, given that the individual has survived up to the starting of the interval. It is th

Classification matrix, Classification matrix: A term many times used in di...

Classification matrix: A term many times used in discriminant analysis for the matrix summarizing the results and outputs obtained from the derived classi?cation rule, and obtaine

Unequal probability sampling, Unequal probability sampling is the sampling...

Unequal probability sampling is the sampling design in which the different sampling units in the population have different probabilities of being included in sample. The differing

Bivariate boxplot, Bivariate boxplot : A bivariate analogue of boxplot in w...

Bivariate boxplot : A bivariate analogue of boxplot in which the inner area contains 50%of the data, and a 'fence' helps to identify the potential outliers. Robust methods or techn

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd