Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

MTB > let c33=loge(c20)

MTB > let c34=loge(c7)

MTB > let c35=loge(c8)

MTB > let c36=loge(c9)

MTB > let c37=loge(c10)

C33 = lnsqres

C34 = lntotexp

C35 = lnincome

C36 = lnage

C37 = lnnk

 

Regression Analysis: lnsqres versus lntotexp

The regression equation is

lnsqres = - 5.41 - 0.155 lntotexp

 

Predictor     Coef  SE Coef      T      P

Constant   -5.4069   0.6430  -8.41  0.000

lntotexp   -0.1550   0.1420  -1.09  0.275

 

S = 2.15075   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     5.515  5.515  1.19  0.275

Residual Error  1517  7017.227  4.626

Total                1518  7022.743

Since β1 ≠ 0 and is 0.155, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

 

Regression Analysis: lnsqres versus lnincome

The regression equation is

lnsqres = - 5.77 - 0.070 lnincome

 

Predictor     Coef  SE Coef      T      P

Constant   -5.7687   0.7111  -8.11  0.000

lnincome   -0.0698   0.1465  -0.48  0.634

 

S = 2.15143   R-Sq = 0.0%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     1.050  1.050  0.23  0.634

Residual Error  1517  7021.693  4.629

Total                1518  7022.743

Since β1 ≠ 0 and is 0.070, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnage

The regression equation is

lnsqres = - 7.23 + 0.315 lnage

 

Predictor     Coef  SE Coef      T      P

Constant   -7.2276   0.9125  -7.92  0.000

lnage         0.3155   0.2563   1.23  0.219

 

S = 2.15052   R-Sq = 0.1%   R-Sq(adj) = 0.0%

 

Analysis of Variance

Source                DF        SS     MS     F      P

Regression          1      7.007  7.007  1.52  0.219

Residual Error    1517  7015.736  4.625

Total                  1518  7022.743

Since β1 ≠ 0 and is 0.315, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnnk

The regression equation is

lnsqres = - 5.99 - 0.281 lnnk

Predictor     Coef        SE Coef           T      P

Constant   -5.98771  0.08819  -67.89  0.000

lnnk           -0.2812   0.1631   -1.72  0.085

 

S = 2.14949   R-Sq = 0.2%   R-Sq(adj) = 0.1%

Analysis of Variance

Source            DF        SS          MS            F      P

Regression      1       13.738    13.738  2.97  0.085

Residual Error 1517  7009.004  4.620

Total               1518  7022.743

Since β1 ≠ 0 and is 0.281, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

MTB > # lntotexp is significant and estimate of beta/2 is -0.155/2 or -0.775


Related Discussions:- Parks test

Statistically modeling, A comprehensive regression analysis of the case stu...

A comprehensive regression analysis of the case study London has been carried out to test the 4 assumptions of regression: 1. Variables are normally distributed 2. Linear rel

Explain labour force survey, Labour force survey : This survey carried out ...

Labour force survey : This survey carried out in the UK on the quarterly basis since the spring of year 1992. It covers 60 000 households and gives labour force and other detail

Scatter plots, The scatter plot of SRES1 versus totexp demonstrates that th...

The scatter plot of SRES1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plot show that th

Scatter plots - non-linear relationship, The scatter plots of SRES1, RESI1 ...

The scatter plots of SRES1, RESI1 versus totexp demonstrates that there is non-linear relationship that exists as most of the points are below and above zero. The scatter plots sho

Prognostic scoring system, Prognostic scoring system is a technique of com...

Prognostic scoring system is a technique of combining the prognostic information contained in the number of threat factors, in a manner which best predicts each patient's risk of

Decision Models., An oil company thinks that there is a 60% chance that the...

An oil company thinks that there is a 60% chance that there is oil in the land they own. Before drilling they run a soil test. When there is oil in the ground, the soil test comes

The breusch-pagan test, The Null Hypothesis - H0:  There is no heteroscedas...

The Null Hypothesis - H0:  There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if Q = ESS/2 >

Partial autocorrelation function, The graph for Partial Autocorrelation Fun...

The graph for Partial Autocorrelation Function for RES1 shows that there is no autocorrelation even though there are alternating spikes because they fall inside the 5% significance

Mortality odds ratio, Mortality odds ratio  is the ratio equivalent to the ...

Mortality odds ratio  is the ratio equivalent to the odds ratio used in case-control studies where the equivalent of the cases are deaths from the cause of interest and the equival

Graphics., how to calculate the semi average method when 8 observations are...

how to calculate the semi average method when 8 observations are given?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd