Optimal foraging theory, MATLAB in Mathematics

Assignment Help:
This project requires you to use the ideas of Chapter 25 regarding maximization of a function. Here we assume that evolution has acted to generate highly efficient foragers. By highly efficient here we mean that the animals searching for food which are able to more rapidly obtain a high food intake rate (food eaten per unit time), will be more likely to survive and reproduce. Thus, if the characteristics that lead to high food intake efficiency (which may depend upon speed, visual or hearing skills, size, etc.) are heritable, then the characteristics which lead to higher efficiency will become more prevalent (increase in frequency) in the population. This area of science is called optimal foraging theory. For a readable description of this theory see David Stephens and John Krebs book Foraging Theory [60].
One of the main areas of foraging theory deals with animals which move from “patch” to “patch” across a landscape, depleting the food in each patch the longer they stay there. Patches could be individual plants with nectar in the plants flowers that is eaten by bees, or individual plants with seeds that are eaten by birds. One question in foraging theory is to deduce the rules for when an individual will leave one patch to search for a new patch. Numerous complications arise in this, but we will consider only a very simple situation, in which we have the following assumptions:
(1) There are no interactions with other foragers, so depletion of food in a patch is due only to the single forager under consideration.
(2) There is no randomness in the environment, so that each patch is identical in terms of how much resource it has before foraging starts.
(3) Once the patch is depleted it stays depleted. (4) There are many patches available. (5) The travel-time of the forager between patches is constant.
(6) The food available in the patch decreases exponentially as the forager spends time there.
467
468 Unit 6 Derivatives
Let t be the time spent in a patch before leaving, M be the time it takes to move between two patches, and K be the amount of food in a patch before any food has been eaten. Then the total amount of food eaten in a patch is
K(1 - e-ct) (27.1)
where c is the decay rate of available food in a patch once foraging starts. In Equation 27.1 e-ct represents the proportion of food left in the patch after the forager has eaten from the patch over time t. Thus, 1 - e-ct represents the proportion of food eaten from the patch over time t. When we multiply this term by K (the total amount of food in the patch before any is eaten) we obtain the amount of food eaten from the patch after the foraging is complete.
We define the one foraging bout as the time spent moving to the patch plus the time spent foraging in that patch. Thus, the total time of one foraging bout is
M + T. The food intake rate is the amount of food consumed divided by the time spent
consuming the food, i.e.
K ??1 - e-cT ??
(27.2)
T+M Using the example from Section 25.6 as an example, complete the following.
1. Think of Equation 27.2 as a function of the time spent in a patch before leaving, t. Take the first derivative of this function with respect to t. Notice, that when the derivative is set equal to zero, you cannot explicitly solve for t. Write an equation, in terms of t, c, and M that can be graphed and used to find the critical points.
2. Use Matlab to estimate the critical point of the derivative of Equation 27.2, using c = 4 and M = 10. Based on the graph you produced to find the value of the critical point correct to two decimal places. Explain why you know that a local maximum occurs at this point.
3. The critical point found in part 2 is the optimal time a forager should spend foraging in one particular path. Explain why it makes sense biologically that this point is a local maximum.
4. Repeat part 2 but use M = 1, 5, 15, and 20. Does the graph in each case indicate that the critical point is still a maximum? How do the optimal foraging times in these cases compare to the optimal foraging time you found in part 2.
5. Repeat part 2 but use c = 0, 2, 4, 6, 8, 10. Does the graph in each case indicate that the critical point is till a maximum? How to the optimal foraging times in these cases compare to the optimal foraging time you found in part 2.
Chapter 27 Unit Projects 469
6. In Matlab, create the following m-file.
OptimalForaging.m 1 M = [1 5 10 15 20];
2 c = [0 2 4 6 8 10]; 3z= 4 5
6 7
surface(c,M,z); xlabel(’c’); ylabel(’M’);
For z, construct a matrix where each column corresponds to an M value, (1, 5, 10, 15, 20), each row corresponds to a c value, (0, 2, 4, 6, 8, 10), and the value of each entry in the matrix is the corresponding optimal foraging time. For example, the optimal foraging time found in part 2 would be the entry in row 3, column 3. You already have several of the values from parts 2, 4, and 5. You will need to use Matlab to determine the rest of the values. The resulting matrix z should be a 6 × 5 matrix.
Once you have constructed matrix z, run the m-file OptimalForaging.m. A plot
will be generated. Use the button to rotate the graph to look at the surface plot from different angles. Describe what this 3-dimensional surface plot is showing you. What are the advantages and disadvantages of viewing a 3-d plot such as this?

Related Discussions:- Optimal foraging theory

Strings as vectors, Strings as Vectors: The Strings are considered as ...

Strings as Vectors: The Strings are considered as vectors of characters-or in another words, a vector in which each and every element is a single character-so numerous vector

Standard deviation, Standard Deviation The standard deviation is the sq...

Standard Deviation The standard deviation is the square root of variance: The built-in function in a MATLAB for the standard deviation is known as std; the standard dev

Function isreal - complex numbers, Function isreal - complex numbers: ...

Function isreal - complex numbers: The function isreal returns 1 for logical true when there is no imaginary part of the argument, or 0 for false when the argument does have a

Using functions with the vectors and matrices, Using Functions with the Vec...

Using Functions with the Vectors and Matrices: As MATLAB is written to work with the vectors and matrices, the whole vector or matrix can be passed as an argument to the funct

Illustration of empty vectors , Illustration of Empty vectors: The Emp...

Illustration of Empty vectors: The Empty vectors can also be used to delete elements from the arrays. For illustration, to remove the third element from array, an empty vector

Functions to create special matrices, Functions to create special matrices:...

Functions to create special matrices: The MATLAB also has various functions which create special matrices. For illustration, the zeros function generates a matrix of all zeros

Illustration of minimum and maximum value, Illustration of Minimum and Maxi...

Illustration of Minimum and Maximum Value Both of these functions also return the index of the minimum or maximum value; when there is more than one occurrence, it returns the

Illustration of variance, Illustration of Variance For illustration, fo...

Illustration of Variance For illustration, for the vector [4, 6, 1, 5], there are n = 4 values therefore n - 1 is 3. The mean of this data set is also 4. The variance will be

Structure consisting of the fields, Structure Consisting of the Fields ...

Structure Consisting of the Fields A MATLAB can also solve the sets of equations. In this illustration, the solutions for x, y, & z are returned as a structure consisting of th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd