Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

frequenty count of function, Ask question find frequency count of function...

Ask question find frequency count of function- {for(i=1;i {for(j=1;j {for(k=1;k } } }

Progrrame, how to write a code for for a company , for calculate the salary...

how to write a code for for a company , for calculate the salary pay

Binary tree traversals, We have discussed already about three tree traversa...

We have discussed already about three tree traversal methods in the earlier section on general tree. The similar three different ways to do the traversal -inorder , preorder, and p

Recursion, i need help in java recursion assignment.

i need help in java recursion assignment.

Sparse matrix, Q. Define a sparse matrix. Explain different types of sparse...

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk

Multiqueue, data structure for multiqueue

data structure for multiqueue

Calculates partial sum of an integer, Now, consider a function that calcula...

Now, consider a function that calculates partial sum of an integer n. int psum(int n) { int i, partial_sum; partial_sum = 0;                                           /* L

Simplifying assumptions of wire frame representation, Simplifying Assumptio...

Simplifying Assumptions of wire frame representation Neglect colour - consider Intensity: For now we shall forget about colour and restrict our discussion just to the intensi

Binary search, Write the algorithm for Binary search. Also apply this algo...

Write the algorithm for Binary search. Also apply this algorithm on the following data. 22, 44, 11, 88, 33, 55, 77, 66

Applications of avl trees, AVL trees are applied into the given situations:...

AVL trees are applied into the given situations: There are few insertion & deletion operations Short search time is required Input data is sorted or nearly sorted

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd