Operations on b-trees, Data Structure & Algorithms

Assignment Help:

Operations on B-Trees

Given are various operations which can be performed on B-Trees:

  • Search
  • Create
  • Insert

B-Tree does effort to minimize disk access and the nodes are usually stored on disk

All the nodes are supposed to be stored into secondary storage instead of primary storage. All references to a given node are preceded through a read operation. Likewise, once a node is changed and it is no longer required, it has to be written out to secondary storage with write operation.

Given is the algorithm for searching a B-tree:

B-Tree Search (x, k)

i < - 1

while i < = n [x] and k > keyi[x]

do i ← i + 1

if i < = n [x] and k = key1 [x]

then return (x, i)

if leaf [x]

then return NIL

else Disk - Read (ci[x])

return B - Tree Search (Ci[x], k)

The search operation is alike to binary tree. Instead of selecting between a left and right child as in binary tree, a B-tree search have to make an n-way choice.

The right child is selected by performing a linear search of the values into the node. After determining the value greater than or equal to desired value, the child pointer to the instantaneous left to that value is followed.

The exact running time of search operation based upon the height of the tree. Given is the algorithm for the creation of a B-tree:

B-Tree Create (T)

x ← Allocate-Node ( )

 Leaf [x] ← True

n [x] ← 0

Disk-write (x)

root [T] ← x

 

The above denoted algorithm creates an empty B-tree through allocating a new root which has no keys and is a leaf node.

Given is the algorithm for insertion into a B-tree:

B-Tree Insert (T,K)

r ← root (T)

if n[r] = 2t - 1

then S ← Allocate-Node ( )

root[T] ← S

leaf [S] ← FALSE

n[S] ← 0

C1 ← r

B-Tree-Split-Child (s, I, r)

B-Tree-Insert-Non full (s, k)

else

B - Tree-Insert-Non full (r, k)

To carry on an insertion on B-tree, the proper node for the key has to be located. Next, the key has to be inserted into the node.

If the node is not full prior to the insertion, then no special action is needed.

If node is full, then the node has to be split to make room for the new key. As splitting the node results in moving one key to the parent node, the parent node ha not be full. Else, another split operation is required.

This procedure may repeat all the way up to the root and may need splitting the root node.


Related Discussions:- Operations on b-trees

Diophantine Equations, Implement algorithm to solve 5-1 fifth order equati...

Implement algorithm to solve 5-1 fifth order equation given.

State cmy model, CMY Model  The cyan, magenta, yellow (CMY) colour mode...

CMY Model  The cyan, magenta, yellow (CMY) colour model is a subtractive model based on the colour absorption properties of paints and inks. As such it has become the standard

Queue, 1. Show the effect of each of the following operations on queue q. A...

1. Show the effect of each of the following operations on queue q. Assume that y (type Character) contains the character ‘&’. What are the final values of x and success (type boole

Algorithm to find maximum and minimum numbers, Give an algorithm to find bo...

Give an algorithm to find both the maximum and minimum of 380 distinct numbers that uses at most 568 comparisons.

What is a linear array, What is a linear array? An array is a way to re...

What is a linear array? An array is a way to reference a series of memory locations using the similar name. Every memory location is shown by an array element. An  array elemen

Explain the method of overlapping and intersecting, Overlapping or Interse...

Overlapping or Intersecting A polygon overlaps or intersects the current background if any of its sides cuts the edges of the viewport as depicted at the top right corner of th

Proof, prove that n/100=omega(n)

prove that n/100=omega(n)

Recursive function , Q. Write down the recursive function to count the numb...

Q. Write down the recursive function to count the number of the nodes in the binary tree.    A n s . R ecursive Function to count no. of Nodes in Binary Tree is writt

Explain the scan-line algorithm, Explain the Scan-Line Algorithm This i...

Explain the Scan-Line Algorithm This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of fillin

Order of linear search, a. In worst case the order of linear search is O (n...

a. In worst case the order of linear search is O (n/2) b. Linear search is more competent than Binary search. c. For Binary search, the array must be sorted in ascending orde

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd