One-to-one function, Mathematics

Assignment Help:

One-to-one function: A function is called one-to-one if not any two values of x produce the same y.  Mathematically specking, this is the same as saying,

 f ( x1 ) ≠ f ( x2 )

whenever  x1 ≠ x2

Thus, a function is one-to-one if whenever we plug distinct values into the function we get different function values. Sometimes it is simpler to understand this definition if we illustrates a function that isn't one-to-one.

 Let's take a look at a function which isn't one-to-one.  The function f ( x )= x2  is not one-to-one since both f ( -2) = 4 and f ( 2) = 4 .  In other terms there are two different values of x that generate the same value of y.  Note down that we can turn f ( x ) = x2  into a one-to-one function if we limit ourselves to 0 ≤ x <∞ .  It can sometimes be done with functions.

Illustrating that a function is one-to-one is frequently tedious and/or difficult.  For the most part we are going to suppose that the functions which we're going to be dealing with in this course are either one-to-one or we have limited the domain of the function to get it to be a one-to-one function.

Now, let's formally define just what inverse functions are.


Related Discussions:- One-to-one function

Determine the largest possible domain and inverse function, Consider the fu...

Consider the function f(x) =1/2 (2 x +2 -x ) which has the graph (a) Explain why f has no inverse function. You should include an example to support your explanation

Integration techniques, Integration Techniques In this section we are ...

Integration Techniques In this section we are going to be looking at several integration techniques and methods. There are a fair number of integration techniques and some wil

Differential equation to determine initial value problem, Solve the subsequ...

Solve the subsequent IVP. cos(x) y' + sin(x) y = 2 cos 3 (x) sin(x) - 1 y(p/4) = 3√2, 0 Solution : Rewrite the differential equation to determine the coefficient of t

Prove that one of three consecutive integers divisible by 3, Prove that one...

Prove that one of every three consecutive integers is divisible by 3. Ans: n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q +

Differential equatoin, how to solve questions based on higher differential ...

how to solve questions based on higher differential equations

Math, A screening test for a newly discovered disease is being evaluated. I...

A screening test for a newly discovered disease is being evaluated. In order to determine the effectiveness of the new test, it was administered to 900 workers; 150 of the individu

Deflation, Deflation Indexes may be utilized to deflate time series so...

Deflation Indexes may be utilized to deflate time series so that comparisons among periods may be made in real terms. This is a process of decreases a value measured in cur

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd