More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Accumulated amount , $26,000 is spended for two years. In the first year it...

$26,000 is spended for two years. In the first year it gets interest at 8.3% p.a. compounded semi annually. In the same year the rate of interest changes to 7.5% p.a. compounded da

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Calculus, how to find the volume

how to find the volume

Learn, how to find basic intrest problems

how to find basic intrest problems

Division, there are 2,500 chips in a bag you slit them up into 20 groups ho...

there are 2,500 chips in a bag you slit them up into 20 groups how many chips are in a group

Geometry, how do you find the length of a parallel line connecting two exte...

how do you find the length of a parallel line connecting two external circles of different sizes from the outside, given the value of both radius and one parallel line.

Number theory, show that all primes except 2, are of the form 4n-1 or 4n+1...

show that all primes except 2, are of the form 4n-1 or 4n+1.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd