More volume problems, Mathematics

Assignment Help:

More Volume Problems : Under this section we are decide to take a look at several more volume problems. Though, the problems we see now will not be solids of revolution while we looked at in the earlier two sections. There are various solids out there which cannot be produced as solids of revolution, or else at least not simply and therefore we require taking a look at how to do several of these problems.

Here, having said that such will not be solids of revolutions they will even be worked in pretty much similar way.  For each solid we will require to find out the cross-sectional region, either A(x) or A(y), and they utilize the formulas we used in the earlier two sections,

1299_More Volume Problems.png

The "hard" part of such problems will be finding what the cross-sectional area for all solids is. All problems will differ and therefore each cross-sectional region will be found through various means.

Well before we proceed with any illustrations we require acknowledging that the integrals under this section might look a small tricky at first. There are very few problems.  All of the illustrations into this section are going to be more common derivation of volume formulas for specific solids. For this we'll be working with things as circles of radius r and we will not be providing an exact value of r and we will have heights of h in place of specific heights and so on.

All the letters into the integrals are going to create the integrals look a small tricky, although all you must remember is that the r's and the h's are only letters being used to characterize a fixed quantity for the problem, that is this is a constant. Thus when we integrate we only require worrying about the letter in the differential as i.e. the variable we are really integrate regarding. All other letters in the integral must be thought of as constants. Just think about what you would do if the r was a 2 or the h was a 3 for illustration, if you have trouble doing that.

Let's begin with a simple illustration which we don't really need to do an integral which will exemplify how these problems work in common and will find us used to seeing numerous letters in integrals.


Related Discussions:- More volume problems

Calculate the equation, Problem1: Find the general solution on -π/2 Dy/...

Problem1: Find the general solution on -π/2 Dy/dx +(tan x)y =(sin 2 x)y 4

Trigonometry, Ashow that sec^2x+cosec^2x cannot be less than 4

Ashow that sec^2x+cosec^2x cannot be less than 4

Mensuration of plane figures, a sail has a spread of canvas as measured 12'...

a sail has a spread of canvas as measured 12'',12'', 15'' and 9'' and it has 90 degrees. Find the area of one side of the sail

Arithmetic mean, When three quantities are in A.P., then the middle...

When three quantities are in A.P., then the middle one is said to be the arithmetic  mean of the other two. That is, if a, b and c are in A.P., then b is th

Which of the following sets are equal, Which of the following sets are equa...

Which of the following sets are equal? S 1 = {1, 2, 2, 3}, S 2 = {x | x 2 - 2x + 1 = 0}, S 3 = {1, 2, 3}, S 4 = {x | x 3 - 6x

Word problem solving, the traffic light at three different road crossing ch...

the traffic light at three different road crossing change after every 48 seconds, 72 seconds and 108 seconds respectively. if they change simultaneously at 7 a.m., at what time wil

Sketch the direction field for the differential equation, Sketch the direct...

Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd