Methods for doing integral, Mathematics

Assignment Help:

There are really three various methods for doing such integral.

Method 1:

This method uses a trig formula as,

 ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Method 2:

This method uses the substitution as,

u = cos(x)                                                         du = - sin(x)dx

∫sin(x) cos(x) dx = -∫ u du = -½ u2 + c2 = -(1/2) cos2(x) + c2

Method 3:

Now there is another substitution which could be done here as,

u = sin (x)                                                        du = cos (x)dx

∫sin(x) cos(x) dx = ∫ u du = ½ u2 + c3 = (1/2) sin2(x) + c3

Therefore, we've found three various answer each with a different constant of integration.  Though, as per the fact above these three answers must only be different by a constant because they all have similar derivative.

Actually they do only be different by a constant. We will require the following trig formulas to prove that.

cos (2x) = cos2(x) - sin2(x)                               cos2(x) + sin2(x) = 1

Start with the solution from the first method and utilize the double angle formula as above.

-(1/4) (cos2(x) - sin2(x)) + c1

Here, from the second identity above we contain,

-(1/4) (cos2(x) - (1 - cos2(x))) + c1 = -(1/4) (2cos2(x) - 1) + c1

= -(1/2) cos2(x) + (¼) + c1

It is then answer we found from the second method along with a slightly differ constant. Though,

c2 = ¼ + c1

We can do a same manipulation to find the answer from the third method as given. Again, starting with the solution from the first method utilize the double angle formula and after that substitute in for the cosine in place of the sine using,

cos2(x) = 1 - sin2(x)

Doing this provides,

-(1/4)( 1 - sin2(x)) - sin2(x) + c1 = -(1/4)(1 - 2 sin2(x)) + c1

 = (1/2) sin2(x) - (¼) + c1

it is the answer from the third method along with a different constant and again we can associate the two constants with,

c3 =- (¼) + c1

Therefore, what have we learned here? Hopefully we have seen that constants of integration are significant and we cannot forget about them. We frequently don't work with them in a Calculus I course, until now without a good understanding of them we would be hard pressed to know how integration methods differ and apparently make different answers.


Related Discussions:- Methods for doing integral

Factor Fiction, Ok this is true or false wit a definition. The GCF of a pai...

Ok this is true or false wit a definition. The GCF of a pair of numbers can never be equal to one of the numbers.

Measurement story problem, Seth has a pet goldfish. When he got his goldfis...

Seth has a pet goldfish. When he got his goldfish , it was only 5 centimeters long . Now it has grown to be 92 millimeters long. How many millimeters has the goldfish grown since

Famous Numbers, Do you provide the answers to the Famous Numbers Exercise?

Do you provide the answers to the Famous Numbers Exercise?

Matrices, what is the business application of matrices

what is the business application of matrices

Explain different base numbers, Explain Different Base Numbers? In mult...

Explain Different Base Numbers? In multiplying or dividing two exponential expressions with different base numbers, write out the exponential expressions as products. Since

Michael has 16 cds how many cds does kathleen have, Michael has 16 CDs. Th...

Michael has 16 CDs. This is four more than twice the amount that Kathleen has. How many CDs does Kathleen have? Let x = the number of CDs Kathleen has. Four more than twice th

Sqrt n- sqrt 8836, How many integers satisfy (sqrt n- sqrt 8836)^2 Solutio...

How many integers satisfy (sqrt n- sqrt 8836)^2 Solution) sqrt 8836 = 94 , let sqrt n=x the equation becomes... (x-94)^2 (x-94)^2 - 1 (x-95)(x-93) hence  93 8649  the number o

Fraccions, multiply 9/19 times 95/7

multiply 9/19 times 95/7

Indices, 4n to the power 3/2 = 8 to the power minus 1/3. find the value of ...

4n to the power 3/2 = 8 to the power minus 1/3. find the value of n.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd