Methods for doing integral, Mathematics

Assignment Help:

There are really three various methods for doing such integral.

Method 1:

This method uses a trig formula as,

 ∫sin(x) cos(x) dx = ½ ∫sin(2x) dx = -(1/4) cos(2x) + c

Method 2:

This method uses the substitution as,

u = cos(x)                                                         du = - sin(x)dx

∫sin(x) cos(x) dx = -∫ u du = -½ u2 + c2 = -(1/2) cos2(x) + c2

Method 3:

Now there is another substitution which could be done here as,

u = sin (x)                                                        du = cos (x)dx

∫sin(x) cos(x) dx = ∫ u du = ½ u2 + c3 = (1/2) sin2(x) + c3

Therefore, we've found three various answer each with a different constant of integration.  Though, as per the fact above these three answers must only be different by a constant because they all have similar derivative.

Actually they do only be different by a constant. We will require the following trig formulas to prove that.

cos (2x) = cos2(x) - sin2(x)                               cos2(x) + sin2(x) = 1

Start with the solution from the first method and utilize the double angle formula as above.

-(1/4) (cos2(x) - sin2(x)) + c1

Here, from the second identity above we contain,

-(1/4) (cos2(x) - (1 - cos2(x))) + c1 = -(1/4) (2cos2(x) - 1) + c1

= -(1/2) cos2(x) + (¼) + c1

It is then answer we found from the second method along with a slightly differ constant. Though,

c2 = ¼ + c1

We can do a same manipulation to find the answer from the third method as given. Again, starting with the solution from the first method utilize the double angle formula and after that substitute in for the cosine in place of the sine using,

cos2(x) = 1 - sin2(x)

Doing this provides,

-(1/4)( 1 - sin2(x)) - sin2(x) + c1 = -(1/4)(1 - 2 sin2(x)) + c1

 = (1/2) sin2(x) - (¼) + c1

it is the answer from the third method along with a different constant and again we can associate the two constants with,

c3 =- (¼) + c1

Therefore, what have we learned here? Hopefully we have seen that constants of integration are significant and we cannot forget about them. We frequently don't work with them in a Calculus I course, until now without a good understanding of them we would be hard pressed to know how integration methods differ and apparently make different answers.


Related Discussions:- Methods for doing integral

Prove sum of squares any two sides equal twice square, Prove that in any tr...

Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median, which bisect

Transportation and assignment problem, what is transportation and assignmen...

what is transportation and assignment problem. give the computer application of transportation and assignment problem

Prove that the poset has a unique least element, Prove that the Poset has a...

Prove that the Poset has a unique least element Prove that if (A, ) has a least element, then (A,≤)  has a unique least element. Ans: Let (A, ≤) be a poset. Suppose the po

Solve the form x2 - bx - c in factoring polynomials, Solve The form x 2 -...

Solve The form x 2 - bx - c in  Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient

Derivatives of trig functions, Derivatives of Trig Functions In this s...

Derivatives of Trig Functions In this section we will see derivatives of functions other than polynomials or roots of polynomials. We'll begin this process off through taking

Find where the breakdown occurred and his original speed, A cyclist, after ...

A cyclist, after riding a certain distance, stopped for half an hour to repair his bicycle, after which he completes the whole journey of 30km at half speed in 5 hours.  If the bre

Developing an understanding of subtraction, DEVELOPING AN UNDERSTANDING O...

DEVELOPING AN UNDERSTANDING OF SUBTRACTION :  The process of subtraction is the reverse of that of addition. Adding more to a collection to make it bigger is just the reverse

Determine the equation of plane - three dimensional space, Determine the eq...

Determine the equation of the plane that consists of the points P = (1, -2, 0), Q = (3, 1, 4) and R = (0, -1, 2). Solution To write down the equation of plane there is a re

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd