Maxima and minima, Mathematics

Assignment Help:

Maxima and Minima

We have to make a distinction between relative maxima (or minima) and global maxima (or minima). Let f(x) be a function of x. Then the global maxima of f(x) is the maximum value which f(x) could take for all the possible range of values of x. For example, if x denotes the number of units produced and f(x) denotes the total profit when x units are produced, then we are interested in the maximum value of f(x) for x in the range 0 to the maximum production capacity. Compared to the global maximum, we speak of relative maxima, which is the maximum value of f(x) in a relatively small range of values of x. f(x) is said to have a relative maxima at a point x = a, if the value of the function at a, f(a) is greater than or equal to f(x) for values of x sufficiently close to value a. Look at the graph of a function f(x) given below.

Figure 

10_maxima and minima.png

This function has a relative maxima at points x = a and at x = c, and a relative minima at points x = b and x = d. If we consider values of x in the range 0 to d, then the global maxima of the function is f(c) attained at point x = c.

The following characteristic features of the relative maxima and minima could be observed:

  1. For values of x which are sufficiently close to a(or c), the value of the function first increases and then decreases. The slope of the function is positive up to a(or c) and then it becomes negative. For points b and d, the slope changes from negative to positive.

  2. The tangent lines at points a, b, c and d are horizontal indicating that the slopes at those points are zero.

The above observations give the following results:

Result 1:    If f(x) has a relative maxima or minima at  x = a, then the value of the derivative of f(x) at a,  138_maxima and minima14.png is 0.

Note that the converse may not be true. If at a point a,  138_maxima and minima14.png  is 0, it need not necessarily imply that f(x) has a relative maxima or minima.

Result 2:    If, at point a, we have  138_maxima and minima14.png  = 0 and  138_maxima and minima14.png  < 0 then f(x) has a relative maxima at x = a.

If  138_maxima and minima14.png = 0 and  138_maxima and minima14.png  > 0 then f(x) has a relative minima at x = a.

This is because at relative maxima (or minima) the slope changes from positive (or negative) to negative (or positive) for points of close to a.

If  138_maxima and minima14.png = 0 and  138_maxima and minima14.png  = 0 then we cannot say anything definitely about the occurrence of maxima or minima at point a.

Example 

A manufacturer fixed the following demand curve:

         P(x)   = 200 - 3x

Where x = quantity and P = price

Let the fixed cost of production be Rs.25 and the variable cost Rs.2 per unit. The manufacturer wants to fix the level of output so as to maximize his profit.

The profit function f(x) is:

f(x)    = total revenue - total cost

         = price x quantity - (fixed cost + variable cost)

         = (200 - 3x)x - (25 + 2x)

         = -3x2 + 198x - 25

The first order derivative is:

f'x

= - 6x + 198

 

This is 0 if - 6x + 198 = 0 or x = 198/6 = 33

At this level of output, i.e. x = 33, we would like to examine whether we have a minimum or maximum. The second order derivative is:

 

f''(x)

= - 6 which is negative for all values of x

 

Therefore, 138_maxima and minima14.png  < 0

Hence, we conclude that at the level of production of 33 units, the manufacturer will make a maximum profit. The maximum profit is:

-3  *  (33)2 + 198  *  33 - 25 = Rs.3,242

Suppose, the quantity that could be produced is limited to the range, say, 10 to 30 units, then we have to check the value of the profit at the boundary points 10 and 30, in addition to any other points in the range (10,30) and then find the optimal level of production.


Related Discussions:- Maxima and minima

Regression, Regression line drawn as y=c+1075x, when x was 2, and y was 239...

Regression line drawn as y=c+1075x, when x was 2, and y was 239, given that y intercept was 11. Caculate the residual

Proof for properties of dot product, Proof for Properties of Dot Product ...

Proof for Properties of Dot Product Proof of u → • (v → + w → ) = u → • v → + u → • w → We'll begin with the three vectors, u → = (u 1 , u 2 , ...

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Numbers, use the distributive law to write each multiplication in a differe...

use the distributive law to write each multiplication in a different way. the find the answer. 12x14 16x13 14x18 9x108 12x136 20x147

Combinations, evaluate the expression a) 10C4 b) 10P4.....I do not under...

evaluate the expression a) 10C4 b) 10P4.....I do not understand this

Experience language pictures symbols-e - l - p - s , E - L - P - S : Has t...

E - L - P - S : Has the title of this section stumped you? Children, similarly, don't understand new symbols that are thrust upon them without giving them an adequate grounding. Y

What is 2^5, What is 2 5 ? 2 5 = 2 ×2 ×2 ×2 ×2 = 32

What is 2 5 ? 2 5 = 2 ×2 ×2 ×2 ×2 = 32

Find the 14th term in the arithmetic sequence. 60, Find the 14th term in t...

Find the 14th term in the arithmetic sequence. 60, 68, 76, 84, 92

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd