Low and high pass filters - calculate the cutoff frequencies, Electrical Engineering

Assignment Help:

At the completion of this unit, you will be able to determine the cutoff frequencies and attenuations of RC and RL low- and high-pass filters by using test circuits.

UNIT FUNDAMENTALS

A filter is a frequency-selective circuit that permits signals of certain frequencies to pass while it rejects signals at other frequencies.

1231_Low and High Pass Filters 1.png

A low-pass filter, as its name implies, passes low frequencies but rejects high frequencies.

1982_Low and High Pass Filters 2.png

The dividing line between the passing of low frequencies and the rejecting of high frequencies is the cutoff frequency (fc), or -3 dB point. In a low-pass filter, signals lower than the cutoff frequency pass essentially unmodified. Frequencies higher than the cutoff frequency are greatly attenuated, or reduced.

1595_Low and High Pass Filters 3.png

In a high-pass filter, signals higher than the cutoff frequency pass essentially unmodified. Signals lower than the cutoff frequency is greatly attenuated, or reduced.

The cutoff frequency (fc) is the point where the output voltage (Vo) drops to 70.7% of, or 3 dB down from, the input voltage.

1668_Low and High Pass Filters 4.png

Frequency response data may be expressed in terms of output voltage but is usually expressed in decibels (dB). Decibels are units that express or measure the gain or loss (attenuation) in a circuit. The decibel can be based on the ratio of the output voltage (Vo) to the input voltage (Vi).

2117_Low and High Pass Filters 5.png

NOTE: In the type of filters studied in this volume, the output voltage (Vo) is always less than the input voltage (Vi).

1191_Low and High Pass Filters 6.png

The rate of attenuation, or loss, beyond the cutoff frequency (fc) is highly predictable. This attenuation is 6 dB per octave or 20 dB per decade. An attenuation rate of 6 dB per octave is the same rate as 20 dB per decade.

NEW TERMS AND WORDS

band - a range of frequencies.

dB per octave - decibels per octave (dB/octave); a 1 dB increase or decrease over a two-to-one frequency range.

dB per decade - decibels per decade (dB/decade); a 1 dB increase or decrease over a ten-to-one frequency range.

octave - a two-to-one or one-to-two ratio; a frequency factor of two. One octave is the doubling or halving of a frequency.

decade - a ten-to-one or one-to-ten ratio; a frequency factor of ten.

rolled off - gradually attenuated, or decreased. A filter attenuates when its rejected frequencies are rolled off.

EQUIPMENT REQUIRED

F.A.C.E.T. base unit

AC 2 FUNDAMENTALS circuit board

Oscilloscope, dual trace

Generator, sine wave

Exercise 1 - Low-Pass Filters  

EXERCISE OBJECTIVE

When you have completed this exercise, you will be able to calculate the cutoff frequencies and attenuations of RC and RL low-pass filters. You will verify your results with an oscilloscope.

DISCUSSION

  • Several ways exist for the implementation of low-pass filters, each of which consist of a voltage-divider network containing a resistor and a frequency-varying component (inductor or capacitor).
  • Output voltage from the filters is "tapped off" the voltage divider.
  • Changes in the frequency of the supply voltage cause changes in the circuit reactance, resulting in output voltage variations.
  • In RC filters, the capacitive reactance is high at low frequencies compared to the resistance, causing most of the input voltage to appear across the output capacitor.
  • Capacitive reactance decreases as the generator frequency increases, causing larger voltage drops across the R and decreasing the voltage across the output capacitor.
  • Low-pass filters are designed so that frequencies below the cut-off frequency are passed while higher frequencies are attenuated.
  • In low-pass RL filters, the inductive reactance is small at low frequencies compared to the resistance, and most of the input voltage falls across the output resistor.
  • Inductive reactance increases as the generator frequency increases; therefore, more and more voltage is dropped across the inductor and less across the output resistor.
  • Cutoff frequency is defined as the frequency where the output signal is 3 dB down, or 0.707 x Vo.
  • For RC circuits: fc = 1/2πRC
  • For RL circuits: fc = R/2πL

 

 

 

 

 

 


Related Discussions:- Low and high pass filters - calculate the cutoff frequencies

Explain about concentrator expande, In second technique, a concentrator exp...

In second technique, a concentrator expander (CE) is used near cluster of users and another one at exchange end as demonstrated in figure. Only a few junction lines are run between

Calculate the diameter of copper wire, Calculate the diameter of copper wir...

Calculate the diameter of copper wire of length 100 metres used as winding material in a transformer such that the resistance of the whole winding is 2 ohms. Calculate the diameter

Calculate the armature current, A DC shunt motor rotating at 1560 RPM is su...

A DC shunt motor rotating at 1560 RPM is supplied from a 240-V source. The line current supplied to the motor is equal to 27 A. The shunt field resistance of the motor is equal to

Drawing, #question what are the types of lines used there and their applica...

#question what are the types of lines used there and their application ..

V-i characteristics - power semiconductor devices, V- I Characteristics ...

V- I Characteristics When the peak  value of  applied  voltage is less than the break over   voltage  of triac  and no signal  is applied to the triac  it will block  both  pos

Electrical System Design, List four sources of information which are essent...

List four sources of information which are essential to the designer of this electrical installation

Electrical distribution system, 1. Name the three parts of a programmable l...

1. Name the three parts of a programmable logic controller (PLC) and explain why the PLC is preferred by designers over electromechanical relays. 2. Medium-voltage circuit break

Clipper ciruit working explanation, how the clipper circuits are working? e...

how the clipper circuits are working? explanation of working of clipper circuits

Explain bandwidth and applications of rc coupled amplifier, Q. Explain the ...

Q. Explain the bandwidth for the curve and the applications of an RC coupled amplifier. Frequency response curve of an RC coupled amplifier was shown above(prev page). The cut

Compute the percentage change, Q. A particular BJT has a nominal value of α...

Q. A particular BJT has a nominal value of α 0.99. Calculate the nominal β.If α can easily change ±1%, compute the percentage changes that can occur in β.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd