Linked lists - implementation, Data Structure & Algorithms

Assignment Help:

The Linked list is a chain of structures wherein each structure contains data in addition to pointer, which stores the address (link) of the next logical structure in the list.

A linked list is a data structure utilized to maintain a dynamic series of data. Think of linked list as a line of bogies of train where each of bogies is related on to the next bogie. If you have the idea of where the first bogie is, you can follow the link to the next bogie. By following links, you can determine any bogie of the train. While you get to a bogie which isn't holding (linked) on to another bogie, you know you are at the ending.

Linked lists work in the similar way, except programmers generally refer to nodes rather than bogies. A single node is described in the similar way as any other user defined type or the object, except that it also contains a pointer to a variable of the similar type as itself.

We will be seeing how the linked list is stored into the memory of the computer. In the following Figure, we can illustrates that start is a pointer i.e. pointing to the node that contains data as A& the node B is pointing to the node C and the last node  is not pointing to any node. Given 1000,1050,1200 are memory addresses.

1258_LINKED LISTS - IMPLEMENTATION.png

Figure: A Singly linked list

Consider the following definition:

typedefstruct node

{

int data;

struct node *next;

} list;

Once you consists a definition for list node, you can create a list easily by declaring a pointer to the first element, called as the "head". Generally a pointer is utilizedrather than a regular variable. List can be described as

list *head;

This is as simple as that! Now you have a linked list data structure. It isn't in general useful at the moment. You can illustrate if the list is empty. We will be seeing how to declare & define list-using pointers in the following program.

#include

typedefstruct node

{

 

int data;

struct node *next;

} list;

int main()

{

list *head = NULL; /* initialize list head to NULL */

if (head == NULL)

{

printf("The list is empty!\n");

}

}


Related Discussions:- Linked lists - implementation

Graph, Multilist Representation of graph

Multilist Representation of graph

Explain decision tree, Decision Tree A decision tree is a diagram that ...

Decision Tree A decision tree is a diagram that shows conditions and actions sequentially and therefore shows which condition is to be considered first, second and so on. It is

Rooted tree, It does not have any cycles (circuits, or closed paths), which...

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be co

State algorithm to insert node p at the end of a linked list, Algo rithm t...

Algo rithm to Insert a Node p at the End of a Linked List is explained below Step1:   [check for space] If new1= NULL output "OVERFLOW" And exit Step2:   [Allocate fr

Calculates partial sum of an integer, Now, consider a function that calcula...

Now, consider a function that calculates partial sum of an integer n. int psum(int n) { int i, partial_sum; partial_sum = 0;                                           /* L

Comparisions and assignments in worst case, Q. Calculate that how many key ...

Q. Calculate that how many key comparisons and assignments an insertion sort makes in its worst case?        Ans: The worst case performance occurs in insertion

FIRST function in the compiler construction, I need a recursive algorithm t...

I need a recursive algorithm to implement the FIRST function to any grammar

Algorithm to add an element at the end of linked list, Write an algorithm t...

Write an algorithm to add an element at the end of circular linked list.   Algorithm to Add the Element at the End of Circular Linked List. IINSENDCLL( INFO, LINK, START, A

Write an algorithm to illustrate this repeated calculation, The below formu...

The below formula is used to calculate n: n = (x * x)/ (1 - x). Value x = 0 is used to stop the algorithm. Calculation is repeated using values of x until value x = 0 is input. The

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd