Link functions, Advanced Statistics

Assignment Help:

Link functions:

The link function relates the linear predictor ηi to the expected value of the data. In classical linear models the mean and the linear predictor are identical. However, when dealing with counts and the distribution is Poisson, we must have the Poisson distribution parameter satisfy µi > 0 so that the identity link is less attractive, partly because ηi may be negative while µi > 0 must not be. It is advisable to utilize the log link η = log(µ) in this case. Similarly, when dealing with binomial distribution, the parameter p of probability of success in a single trial is restricted to be in (0,1) and the link function serves the purpose to map the interval (0,1) on to R1 . Therefore, links like the following (here µ is replaced by p):

614_Link functions6.png

have been suggested and widely used.

Let us illustrate the most commonly met examples of GLM together with describing the types of response variable, distribution, and the link function:

- Traditional Linear Model:

i) response variable: continuous

ii) distribution: normal

iii) link function: identity : η = µ

- Logistic Regression:

i) response variable: probability ( µ)

ii) distribution: binomial

iii) link function: logit: η = log( µ/1-µ)

- Poisson Regression in Log Linear Model:

i) response variable: count

ii) distribution: Poisson
iii) link function: η = log(µ)
- Gamma model with Log Link:
i) response variable: a positive continuous variable
ii) distribution: Gamma
iii) link function: η = log(µ)

Intermezzo and history. If you read di?erent references, you may get confused about the terminology. You may have already come across the term "general linear model" in your introductory Statistics courses or in some reference books. Note, however, that this term refers to a conventional linear regression model for a continuous response variables given continuous and/or categorical predictors. It includes multiple linear regression, as well as ANOVA and ANCOVA. In SAS, such models are ?t by least squares and weighted least squares using (typically) proc glm. HOWEVER, the "generalized linear model" we are speaking about here, refers to the larger class discussed in this section. The ?rst widely used software package for ?tting these models was called GLIM. Because of this program, "GLIM" became a well-accepted abbreviation for generalized linear models, as opposed to "GLM". Since we clari?ed the confusion though, we will continue using "GLM" for generalized linear models since many recent references use it. Today, generalized linear models are ?t by many packages, notably by the SAS proc genmod. (End of intermezzo).

One of the advantages of the full probabilistic speci?cation of the GLM model is that ML Estimation suggests itself as a natural general estimation method. We have to maximize the log-likelihood

2487_Link functions2.png

where β is linked to θ through the link function. Recall that the main parameter- vector of interest is β, the vector of regression coeffcients in the relation ηi = g(µi) = x0

1971_Link functions3.png

There is nowadays, with the availability of modern computing power, seldom any reason to consider estimators of β that are di?erent from the MLE. By using the chain rule, we get for the components of the score function:

1533_Link functions4.png

The (expected) Fisher information matrix is given then by

687_Link functions5.png

The ML Estimator is de?ned by equating the score function to zero. Numerically, the equation is solved by applying iterative procedures which we discuss next.


Related Discussions:- Link functions

Principal components regression analysis, Principal components regression a...

Principal components regression analysis is a process often taken in use to overcome the problem of multicollinearity in the regression, when simply deleting a number of the expla

Regression, what are tests for residual with nonconstant variance in regres...

what are tests for residual with nonconstant variance in regression diagnostic checking?

Explain initial data analysis (ida), Initial data analysis (IDA): The firs...

Initial data analysis (IDA): The first phase in the examination of the data set which comprises  number of informal steps including the following steps * checking the quality o

Experimental design, i have an assignment for experimental design which is ...

i have an assignment for experimental design which is must done by SAS program can you help me also i need to hand in the assignment till thursday shall i send it for you ?

Daycare, facts and statistics about daycare

facts and statistics about daycare

Business forcastin.., elements , importance, limitation, and theories

elements , importance, limitation, and theories

Lexis diagram, Lexis diagram  is the diagram for displaying the simultaneou...

Lexis diagram  is the diagram for displaying the simultaneous effects of the two time scales (generally age and calendar time) on a rate. For instance, mortality rates from cancer

Helmert contrast, Helmert contrast is the contrast often used in analysis ...

Helmert contrast is the contrast often used in analysis of the variance, in which each level of a factor is tested against average of the remaining levels. So, for instance, if th

Survey Design, Hello, I have a solution for a Survey Design (proposal) assi...

Hello, I have a solution for a Survey Design (proposal) assignment and looking for an expert that can look at it and correct it in case if it is wrong. Do you have this kind of ser

Probability and random processes, how to find the PDF and CDF of a gamma ra...

how to find the PDF and CDF of a gamma random variable with given equation?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd