Linear code with generator matrix , Mathematics

Assignment Help:

1. Consider the code of size 4 (4 codewords) and of length 10 with codewords listed below.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

a) Is this code a linear code? b) What is the minimum distance of the code and how many errors can the code correct? c) What is the union bound on the decoded error probability of this code when the channel is a binary symmetric channel with crossover probability p?

(The channel is also memoryless; that is any bit is in error independent of the all other bits being in error or not). d) Find a decoding rule that requires for any particular received vector y = (y1, y2, . . . , y10) two computations of the Hamming distance between two vectors of length 5 to determine which codeword was sent. (The decoding rule must be such that if the number of errors is less than the correct answer to part (b) the decoding rule will be able to correct these errors).

2. (a) The Hamming code has the following parity check matrix

747_matrix1.png

If the received vector is r = (0,1,0,1,1,1,1) find the most likely transmitted codeword (over a binary symmetric channel with error probability less than 1/2). What is the error correcting capability of the code.

(b) For the linear code with generator matrix shown below find the minimum distance of the code, the error correcting capability of the code and the code rate. Find a upper bound on the probability of a codeword decoding error on a binary symmetric channel.

2475_matrix2.png

3. Code 4 in the lecture notes (on line version) contains 32 codewords of length 15 with minimum distance 7.

(a) Simulate a communication system with this code on an additive white Gaussian noise channel. Count (at least) 100 errors and plot the error probability for signal-to-noise ratios (Eb/N0) from 0 to 6dB in steps of (no more than) 0.5dB.

(b) Determine the union bound on the performance and also plot (on the same plot as part

(a)) the union bound.

(c) Simulate the performance of a hard decision decoder that always decodes to the closest codeword. Plot the codeword error probability (on the same plot as (a) and (b)).

(d) Plot the union bound to the performance of a hard decision decoder (of part (c)).

(e) Simulate the performance of a bounded distance decoder that only corrects 0,1,2 or 3 errors. Determine the probability of choosing the wrong codeword and the probability that the received vector is not within distance 3 of any codeword (this is called a decoding failure).

(f) For a bounded distance decoder and a hard decision channel, i.e. a BSC, analyze (provide a formula) for the probability the decoder does not output the correct codeword.


Related Discussions:- Linear code with generator matrix

What is a function, What is a Function, Anyway? Domain? Range? Next tim...

What is a Function, Anyway? Domain? Range? Next time you're at a fast-food restaurant, take a look at the price list. It may look something like this: • Hamburger.............

Differential equation to determine initial value problem, Solve the subsequ...

Solve the subsequent IVP. cos(x) y' + sin(x) y = 2 cos 3 (x) sin(x) - 1 y(p/4) = 3√2, 0 Solution : Rewrite the differential equation to determine the coefficient of t

Determine the equation of the tangent line, Determine the equation of the t...

Determine the equation of the tangent line to r = 3 + 8 sinθ at θ = Π/6. Solution We'll first need the subsequent derivative. dr/dθ = 8 cosθ The formula for the deriv

Fractions, What is two-thirds plus two-thirds?

What is two-thirds plus two-thirds?

Calculate the difference in payments of home mortgage loan, You have just r...

You have just renegotiated the interest rate of your home mortgage loan. (This is called rate modification.)  The original loan of $400,000 carries an interest rate is 6% has an or

Basic differential equation, Two 1000 liter tanks are containing salt water...

Two 1000 liter tanks are containing salt water. Tank 1 has 800 liters of water initially having 20 grams of salt dissolved in this and tank 2 has 1000 liters of water and initially

Example of imaginary numbers, Example of Imaginary Numbers: Example 1...

Example of Imaginary Numbers: Example 1: Multiply √-2  and √-32 Solution: (√-2)( √-32) = (√2i)( √32i) =√64 (-1) =8 (-1) =-8 Example 2: Divid

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd