Linear approximations, Mathematics

Assignment Help:

Linear Approximations

In this section we will look at an application not of derivatives but of the tangent line to a function. Certainly, to get the tangent line we do have to take derivatives, thus in some way this is an application of derivatives as well.

Given a function, f ( x ) , we can determine its tangent at x = a .  The equation of the tangent line, that we'll call L ( x ) for this discussion, is,

                            L ( x ) = f ( a ) + f ′ ( a ) ( x - a )

 Take a look at the given graph of a function & its tangent line.

2178_l hospital limit.png

From the graph we can illustrates that near x = a the tangent line & the function have closely the similar graph.  On instance we will utilizes the tangent line, L ( x ) , as an approximation to the function, f ( x ) , near x = a .  In these cases we call the tangent line the linear approximation to the function at x = a .


Related Discussions:- Linear approximations

Shoppers` stop, 3. How are Indian customers visiting Shoppers’ Stop any dif...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Approximating definite integrals - integration techniques, Approximating De...

Approximating Definite Integrals - Integration Techniques In this section we have spent quite a bit of time on computing the values of integrals. Though, not all integrals can

Functions, find the derived functions

find the derived functions

Definite integral, from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 ...

from 0->1: Int sqrt(1-x^2) Solution) I=∫sqrt(1-x 2 )dx = sqrt(1-x 2 )∫dx - ∫{(-2x)/2sqrt(1-x 2 )}∫dx ---->(INTEGRATION BY PARTS)        = x√(1-x 2 ) - ∫-x 2 /√(1-x 2 ) Let

Find the polynomial g(x), On dividing the polynomial 4x 4 - 5x 3 - 39x 2 ...

On dividing the polynomial 4x 4 - 5x 3 - 39x 2 - 46x - 2 by the polynomial g(x) the quotient is x 2 - 3x - 5 and the remainder is -5x + 8.Find the polynomial g(x). (Ans:4 x 2 +

Graphical understanding of derivatives, Graphical Understanding of Derivati...

Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd