Limit properties, Mathematics

Assignment Help:

Limit Properties The time has almost come for us to in fact compute some limits.  Though, before we do that we will require some properties of limits which will make our life somewhat easier.  Thus, let's take a look at those first. The proof of some properties can be found in the  Proof of several Limit Properties section of the Extras chapter.

503_lim.png

Properties

First we will suppose that  exist & that c is any constant. Then,

1.  2444_lim1.png 

     In other terms we can "factor" a multiplicative constant out of limit.

2.   

1220_lim2.png

Therefore to take the limit of a sum or difference all we have to do is take the limit of the individual parts & then put them back together along with the appropriate sign. It is also not limited to two functions.  This issue will work no matter how many functions we've got separated through "+" or "-".

3.   849_lim3.png

We take the limits of products in the similar way which we can take the limit of sums or differences. Just take the limit of the pieces & then put them back together.  Also, such as with sums or differences, this fact is not restricted to just two functions.

4.

656_lim4.png

As noted in the statement we only have to worry regarding the limit in the denominator being zero while we do the limit of a quotient.  If it were zero we would end  along with a division by zero error and we have to avoid that.

5.   850_lim5.png,  where n refer to any real number

In this case n can be any real number (positive, integer, negative fraction, zero, irrational etc.).  In this case that n refers to an integer this rule can be thought of as an extended case of 3.

For instance assume the case of n = 2.

1496_lim6.png

The similar can be done for any integer n.

6.

234_lim7.png

 It is just a special case of the previous example.

2094_lim8.png

7.   1385_lim9.png  c refer to any real number

In other terms, the limit of a constant is just the constant.  You have to be able to convince yourself of this through drawing the graph of f ( x )= c .

8.

855_lim10.png

As with the last one you have to be able to convince yourself of this by drawing the graph

of  f (x ) = x .

9.

328_lim11.png

 It is really just a special case of property 5 using f ( x )= x .

Note as well that all these properties also hold for the two one-sided limits in addition to we just didn't write them down along with one sided limits to save on space.

Let's calculate a limit or two using these properties. The next examples will lead us to some really useful facts regarding limits that we will employ on a continual basis.


Related Discussions:- Limit properties

Regression and correlation analysis on income and ex, regression and correl...

regression and correlation analysis on income and expenditure

Example of infinite interval - improper integrals, Evaluate the subsequent ...

Evaluate the subsequent integral. Solution This is an innocent enough looking integral. Though, because infinity is not a real number we cannot just integrate as norm

Describe the laws of sines, Q. Describe the Laws of Sines? Ans. Up...

Q. Describe the Laws of Sines? Ans. Up to now we have dealt exclusively with right triangles.  The Law of Sines and the Law of Cosines are used to solve  oblique triangles

Evaluate negative infinity, Evaluate both of the following limits. ...

Evaluate both of the following limits. Solution : Firstly, the only difference among these two is that one is going to +ve infinity and the other is going to negative inf

What is factoring of polynomials, What is Factoring of Polynomials? Fac...

What is Factoring of Polynomials? Factoring means much the same thing for polynomials as it does for integers. When you multiply several polynomials together, The polyn

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

What is the probability that |x| < 2 , A number x is chosen at random ...

A number x is chosen at random from the numbers -3, -2, -1, 0 1, 2, 3. What is the probability that  | x| Ans :    x  can take 7 values To get |x| Probability (| x |

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd