Limit properties, Mathematics

Assignment Help:

Limit Properties The time has almost come for us to in fact compute some limits.  Though, before we do that we will require some properties of limits which will make our life somewhat easier.  Thus, let's take a look at those first. The proof of some properties can be found in the  Proof of several Limit Properties section of the Extras chapter.

503_lim.png

Properties

First we will suppose that  exist & that c is any constant. Then,

1.  2444_lim1.png 

     In other terms we can "factor" a multiplicative constant out of limit.

2.   

1220_lim2.png

Therefore to take the limit of a sum or difference all we have to do is take the limit of the individual parts & then put them back together along with the appropriate sign. It is also not limited to two functions.  This issue will work no matter how many functions we've got separated through "+" or "-".

3.   849_lim3.png

We take the limits of products in the similar way which we can take the limit of sums or differences. Just take the limit of the pieces & then put them back together.  Also, such as with sums or differences, this fact is not restricted to just two functions.

4.

656_lim4.png

As noted in the statement we only have to worry regarding the limit in the denominator being zero while we do the limit of a quotient.  If it were zero we would end  along with a division by zero error and we have to avoid that.

5.   850_lim5.png,  where n refer to any real number

In this case n can be any real number (positive, integer, negative fraction, zero, irrational etc.).  In this case that n refers to an integer this rule can be thought of as an extended case of 3.

For instance assume the case of n = 2.

1496_lim6.png

The similar can be done for any integer n.

6.

234_lim7.png

 It is just a special case of the previous example.

2094_lim8.png

7.   1385_lim9.png  c refer to any real number

In other terms, the limit of a constant is just the constant.  You have to be able to convince yourself of this through drawing the graph of f ( x )= c .

8.

855_lim10.png

As with the last one you have to be able to convince yourself of this by drawing the graph

of  f (x ) = x .

9.

328_lim11.png

 It is really just a special case of property 5 using f ( x )= x .

Note as well that all these properties also hold for the two one-sided limits in addition to we just didn't write them down along with one sided limits to save on space.

Let's calculate a limit or two using these properties. The next examples will lead us to some really useful facts regarding limits that we will employ on a continual basis.


Related Discussions:- Limit properties

Find out the taylor series for f (x) = ex about x = 0, Find out the Taylor ...

Find out the Taylor Series for f (x) = e x about x = 0. Solution In fact this is one of the easier Taylor Series that we'll be asked to calculate.  To find out the Taylor

How much was invested at 12% if the total annual interest, Jackie invested ...

Jackie invested money in two different accounts, one of that earned 12% interest per year and another that earned 15% interest per year. The amount invested at 15% was 100 more tha

Probability, julie has 3 hats and 5 scarves. How many ways can she wear a h...

julie has 3 hats and 5 scarves. How many ways can she wear a hat and a scarf?

Express the negation of the statement, States the negation of the statement...

States the negation of the statement ∀x ∃y (xy = 1) so that no negation precedes a quantifier. Ans: The negation of the following statement is written as ~ [∀x ∃y (xy = 1)]. An

Retest Simulation, What is the probability of guessing five questions on a ...

What is the probability of guessing five questions on a test correctly

What was the us''s policy towards latin america, What was the US's policy t...

What was the US's policy towards Latin America during the 20th century? What were the motives behind this policy? Give one example of the US executing this policy?

Upper limit of normal , Frequently, tests that yield abnormal results are r...

Frequently, tests that yield abnormal results are repeated for confirmation.  What is the probability that for a usual person a test will be at least 1.5 times as high as the upper

Law of cosines - vector, Theorem a → • b → = ||a → || ||b → || cos• ...

Theorem a → • b → = ||a → || ||b → || cos• Proof Let us give a modified version of the diagram above. The three vectors above make the triangle AOB and note tha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd