Laplace transforms, Mathematics

Assignment Help:

In this section we will be searching how to utilize Laplace transforms to solve differential equations. There are various types of transforms out there into the world. Laplace transforms and Fourier transforms are probably the major two types of transforms which are used. When we will see in shortly sections we can use Laplace transforms to decrease a differential equation to an algebra problem. The algebra can be messy on time, but this will be easy than in fact solving the differential equation directly in various cases. Laplace transforms can also be used to resolve IVP's which we can't use any previous method on.

For "simple" differential equations as those in the first only some sections of the last section Laplace transforms will be messier than we require. Actually, for most homogeneous differential equations as those in the last section Laplace transforms is considerably longer and not so helpful.  Also, many of the "simple" non-homogeneous differential equations which we saw in the Undetermined Coefficients and Variation of Parameters are even simpler or at the least no more complicated than Laplace transforms to do as we did them there. Though, at this point, the amount of work needed for Laplace transforms is starting to equivalent the amount of work we did in those sections.

Laplace transforms arrives in its own while the forcing function in the differential equation starts finding more complicated. In the earlier section we searching for only at non-homogeneous differential equations wherein g(t) was a quite simple continuous function.  Under this section we will start looking at g(t)'s which are not continuous. This is these problems where the cause for using Laplace transforms start to turns into clear.

We will also search that, for some of the more complex non-homogeneous differential equations from the last section, Laplace transforms are in fact easier on those problems also.


Related Discussions:- Laplace transforms

Find the ratio of line segment, Find the ratio in which the line segment jo...

Find the ratio in which the line segment joining A(6,5) and B(4,-3) is divided by the line y=2           (Ans:3:5) Ans :   Let the ratio be k:1 x = 4 k + 6/ k +1 y

Find the radii of the two circles , The sum of the diameters of two circle...

The sum of the diameters of two circles is 2.8 m and their difference of circumferences is 0.88m. Find the radii of the two circles  (Ans: 77, 63) Ans:    d 1 + d 2 = 2.8 m=

Find where the breakdown occurred and his original speed, A cyclist, after ...

A cyclist, after riding a certain distance, stopped for half an hour to repair his bicycle, after which he completes the whole journey of 30km at half speed in 5 hours.  If the bre

Define number line, Q. Define Number Line? Ans. A number line is a...

Q. Define Number Line? Ans. A number line is a nice way to visualize and examine the ordering of the positive and negative numbers. Every positive and negative number that

Determine the relative global error, Consider the differential equation giv...

Consider the differential equation give by y′ = -10(y - sin t) (a) Derive by hand exact solution that satis?es the initial condition y(0) = 1. (b) Numerically obtain the s

Statistics, the median of a continuous frequency distribution is 21.if each...

the median of a continuous frequency distribution is 21.if each observation is increased by 5. find the new median

What is the opec, What is the OPEC? - The Organization of the Petroleum Exp...

What is the OPEC? - The Organization of the Petroleum Exporting Countries, a coordination group of petrol producers The Organization for Peace and Economic Cooperation, a German le

Mathematical laboratory, how to reverse positive digit number using mod fun...

how to reverse positive digit number using mod function

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd