Integration variable, Mathematics

Assignment Help:

Integration variable : The next topic which we have to discuss here is the integration variable utilized in the integral. In fact there isn't actually a lot to discuss here other than to note as well that the integration variable doesn't actually matter.  For instance,

∫x4 + 3x - 9 dx = (1/5) x5 + 3/2 x2 - 9x + c

∫t 4 +3t - 9 dt = 1 t 5 + 3 t 2 - 9t + c

∫w4 + 3w - 9 dw = 1 w5 + 3 w2 - 9w + c

Changing the integration variable in the integral merely changes the variable in the answer. It is significant to notice though that while we change the integration variable in the integral we also changed the differential (dx, dt, or dw) to match the new variable. it is more significant that we might realize at this point.

Another utilization of the differential at the ending of integral is to tell us what variable we are integrating with respect to. At this stage which may seem insignificant since mostly integrals which we're going to be working with here will only include a single variable.  Though, if you are on a degree track which will take you into multi-variable calculus it will be very significant at that stage as there will be more than one variable in the problem.  You have to get into the habit of writing the accurate differential at the end of the integral so while it becomes significant in those classes already you will be in the habit of writing it down.

To see why it is important take a look at the following two integrals.

∫ 2x dx                                              ∫ 2t dx

The first integral is simple enough.

                 ∫ 2x dx = x2 + c

The second integral is also rather simple, but we have to be careful. The dx tells us that we are integrating x's. That means that we integrate x's only which are in the integrand and all other variables in the integrand are assumed to be constants. Then the second integral is,

                                                    ∫ 2t dx = 2tx + c

Thus, it may appear silly to always put in the dx, however it is a vital bit of notation which can cause us to acquire the incorrect answer if we neglect to put it in.


Related Discussions:- Integration variable

Calcilate the height of the cone of which the bucket , A bucket of height 8...

A bucket of height 8 cm and made up of copper sheet is in the form of frustum of right circular cone with radii of its lower and upper ends as 3 cm and 9 cm respectively. Calculate

Linear equation, The sum of the digit number is 7. If the digits are revers...

The sum of the digit number is 7. If the digits are reversed , the number formed is less than the original number. find the number

Simultaneous equations, i need a step by step guide to answering simultaneo...

i need a step by step guide to answering simultaneous equation for gcses

The laplace method, The Laplace method Laplace method employs all the i...

The Laplace method Laplace method employs all the information by assigning equal probabilities to the possible payoffs for every action and then selecting such alternative whic

Calculate plurality based on the number of voters and candid, Consider an e...

Consider an election with 721 voters. A) If there are 5 candidates, at least x votes are needed to have a plurality of the votes. Find x. B) Suppose that at least 73 votes are n

Determine the property of partial ordered relation, Determine the property ...

Determine the property of Partial ordered relation Question: Partial ordered relation is transitive, reflexive and  Answer: antisymmetric

Parabola, If the point (a,2a) is an interior point of the region bounded by...

If the point (a,2a) is an interior point of the region bounded by the parabola y2=16x and the double ordinate through the focus then a belongs to

Find the sum of first 40 positive integers, Find the sum of first 40 positi...

Find the sum of first 40 positive integers divisible by 6 also find the sum of first 20 positive integers divisible by 5 or 6. Ans:          No's which are divisible by 6 are

Average function value of even and odd function, Average Function Value ...

Average Function Value The first application of integrals which we'll see is the average value of a function. The given fact tells us how to calculate this. Average Functi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd