Indeterminate forms, Mathematics

Assignment Help:

Indeterminate forms

Limits we specified methods for dealing with the following limits.

967_limit41.png

In the first limit if we plugged in x = 4 we would get 0/0 & in the second limit if we "plugged" within infinity we would get ∞ /-∞ (recall that as x goes to infinity polynomial will act in the similar fashion that its largest power behaves). Both are called indeterminate forms.  In both cases there are competing interests or rules & it's not clear which will win out.

In the case of 0/0 typically we think of a fraction which has a numerator of zero as being zero. Though, we also tend to think of fractions wherein the denominator will zero as infinity or may not exist at all.  Similarly, we tend to think of a fraction wherein the numerator & denominator are the similar as one.  Therefore, which will win out?  Or will neither win out and they all will "cancel out" and the limit will attain some other value?

In the case of ∞ /-∞ we contain a similar set of problems.  If the numerator of fraction will be infinity we tend to think of the whole fraction will be infinity.  Also if the denominator will be infinity we tend to think of the fraction will be zero. We also have the case of a fraction wherein the numerator & denominator are the similar (ignoring the minus sign) and thus we might get -1.  Again, it's not apparent which of these will win out, if any will win out.

Along the second limit there is the further problem which infinity isn't actually a number and therefore we actually shouldn't even treat it as a number.  Most of time it simply won't behave as we would expect it to if it was a number.

It is the problem with indeterminate forms.  It's just not apparent what is happening in the limit. There are other kinds of indeterminate forms as well. Some other kinds are following,

(0) ( ± ∞ )         1       00                 ∞0            ∞ - ∞

2118_limit42.png

These all contain competing interests or rules which tell us what have to happen and it's just not apparent which, if any, of the interests or rules will win out.

For the two limits above we work on them as follows.

1234_limit43.png

In the first case simply we factored, canceled & took the limit and in the second case we factored out an x2 from both the numerator & the denominator and took the limit. Notice that none of the competing interests or rules in these instance won out! That is frequently the case.

Thus we can deal with some of these.  Though what about the following two limits.

29_limit44.png

First is a 0/0 indeterminate form, however we can't factor this one.  The second is an  ∞ /∞   indeterminate form, however we can't just factor an x2 out of the numerator.


Related Discussions:- Indeterminate forms

construct an isosceles triangle, 1. Construct an isosceles triangle whose ...

1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles

Addition of like terms with same signs, Case 1: Suppose we are given...

Case 1: Suppose we are given expressions like 3abc and 7abc and asked to compute their sum. If this is the case we should not worry much. Because adding like exp

Trapezoid rule - approximating definite integrals, Trapezoid Rule - Approxi...

Trapezoid Rule - Approximating Definite Integrals For this rule we will do similar set up as for the Midpoint Rule. We will break up the interval [a, b] into n subintervals of

Determine the position and nature of stationary points, Question. Deter...

Question. Determine the position and nature of stationary points of the function? f(x,y)= y/x -x 2 +y 2

Find the quotient and remainder, Question: Find the quotient and remain...

Question: Find the quotient and remainder when f(x) = x 5 - x 4 - 4x 3 + 2x + 3 is divided by g(x) = x-2. Make sure the quotient and remainder are clearly identified.

Complex numbers, Complex Numbers In the radicals section we noted that...

Complex Numbers In the radicals section we noted that we won't get a real number out of a square root of a negative number.  For example √-9 isn't a real number as there is no

Fractions, what is 1/3 + 2/9 equal

what is 1/3 + 2/9 equal

Homework, How do you simplify 10:30:45

How do you simplify 10:30:45

Calculate the average return, A department store faces a decision for a sea...

A department store faces a decision for a seasonal product for which demand can be high, medium or low. The purchaser can order 1, 2 or 3 lots of this product before the season beg

The invisible effort on learning maths, The Invisible Effort :   Although t...

The Invisible Effort :   Although the development of children is a process, what is noticed and given recognition to is the end-product. We usually speak of children having achieve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd