Implement binary heap in c++?, C/C++ Programming

Assignment Help:

A:BinaryHeap.h

------------

#ifndef BINARY_HEAP_H_

#define BINARY_HEAP_H_

#include "dsexceptions.h"

#include "vector.h"

// BinaryHeap class

// CONSTRUCTION: with an optional capacity (that defaults to 100)

// *********PUBLIC OPERATIONS**************

// void insert( x ) --> Insert x

// deleteMin( minItem ) --> Remove (and optionally return) smallest item

// Comparable findMin( ) --> Return smallest item

// bool isEmpty( ) --> if empty, Return true; else false

// bool isFull( ) --> if full , Return true; else false

// void makeEmpty( ) --> Eliminate all items

// ***********ERRORS*************

// Throws Underflow & Overflow as necessary

template

class BinaryHeap

{

public:

explicit BinaryHeap( int capacity = 100 );

bool isEmpty( ) const;

bool isFull( ) const;

const Comparable & findMin( ) const;

void insert( const Comparable & x );

void deleteMin( );

void deleteMin( Comparable & minItem );

void makeEmpty( );

private:

int currentSize; // Number of elements in heap vector array; // The heap array

void buildHeap( );

void percolateDown( int hole );

};

#endif

 

BinaryHeap.cpp

--------------

#include "BinaryHeap.h"

/**

* Construct the binary heap.

* Capacity means capacity of binary heap.

*/

template

BinaryHeap::BinaryHeap( int capacity )

: array( capacity + 1 ), currentSize( 0 )

{

}

 

/**

* Insert item x in the priority queue, maintaining heap order.

* Duplicates are allowed.

* Throw Overflow if container is full.

*/

template

void BinaryHeap::insert( const Comparable & x )

{

if( isFull( ) )

throw Overflow( );

// Percolate up

int hole = ++currentSize;

for( ; hole > 1 && x < array[ hole / 2 ]; hole /= 2 )

array[ hole ] = array[ hole / 2 ];

array[ hole ] = x;

}

/**

* Determine the smallest item in the priority queue.

* Return the smallest item, or if empty , throw Underflow.

*/

template

const Comparable & BinaryHeap::findMin( ) const

{

if( isEmpty( ) ) throw Underflow( ); return array[ 1 ];

}

/**

* From priority queue remove smallest item.

* Throw Underflow if empty.

*/

template

void BinaryHeap::deleteMin( )

{

if( isEmpty( ) )

throw Underflow( );

array[ 1 ] = array[ currentSize-- ];

percolateDown( 1 );

}

 

/**

* From the priority queue eliminate the smallest item

* and place it in minItem. Throw Underflow if empty.

*/

template

void BinaryHeap::deleteMin( Comparable & minItem )

{

if( isEmpty( ) )

throw Underflow( );

minItem = array[ 1 ];

array[ 1 ] = array[ currentSize-- ];

percolateDown( 1 );

}

/**

* From arbitrary establish heap order property

* Arrangement of items. Runs in linear time.

*/

template

void BinaryHeap::buildHeap( )

{

for( int i = currentSize / 2; i > 0; i-- )

percolateDown( i );

}

/**

* Test if the priority queue is empty logically.

* Return true if empty, or else false.

*/

template

bool BinaryHeap::isEmpty( ) const

{

return currentSize == 0;

}

/**

* Test if priority queue is logically full.

* Return true if full, false otherwise.

*/

template

bool BinaryHeap::isFull( ) const

{

return currentSize == array.size( ) - 1;

}

/**

* Logically make priority queue empty.

*/

template

void BinaryHeap::makeEmpty( )

{

currentSize = 0;

}

/**

* To percolate down, internal technique in the heap.

* hole is the index whereupon the percolate begins.

*/

template

void BinaryHeap::percolateDown( int hole )

{

/* 1*/ int child;

/* 2*/ Comparable tmp = array[ hole ];

/* 3*/ for( ; hole * 2 <= currentSize; hole = child )

{

/* 4*/ child = hole * 2;

/* 5*/ if( child != currentSize && array[ child + 1 ] < array[ child ] )

/* 6*/ child++;

/* 7*/ if( array[ child ] < tmp )

/* 8*/ array[ hole ] = array[ child ];

else

/* 9*/ break;

}

/*10*/ array[ hole ] = tmp;

}

TestBinaryHeap.cpp

------------------

#include

#include "BinaryHeap.h"

#include "dsexceptions.h"

// Test program int main( )

{

int numItems = 10000; BinaryHeap h( numItems ); int i = 37;

int x;

try

{

for( i = 37; i != 0; i = ( i + 37 ) % numItems )

h.insert( i );

for( i = 1; i < numItems; i++ )

{

h.deleteMin( x );

if( x != i )

cout << "Oops! " << i << endl;

}

for( i = 37; i != 0; i = ( i + 37 ) % numItems )

h.insert( i );

h.insert( 0 );

h.insert( i = 999999 ); // Should overflow

}

catch( Overflow )

{ cout << "Overflow (expected)! " << i << endl; }

return 0;

}

 


Related Discussions:- Implement binary heap in c++?

Last ant on rod, There are ''n'' ants on a ''n+1'' length rod. The ants are...

There are ''n'' ants on a ''n+1'' length rod. The ants are numbered from 1 to n and are initially placed at positions starting from position 1 till position n. They are moving eith

Define the logical operators in c language, Define the Logical Operators in...

Define the Logical Operators in c language? The Logical operators deals with the ways the relationships are able to connected. C has the following three logical operators

Create a album using multi-dimensional arrays, Create a Document that show ...

Create a Document that show information about albums. First create a paragraph or two about the purpose of the page and your interests in music: genres, styles, etc. Next have a

Area under the curve, Write a program to find the area under the curve y ...

Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b. The area under a curve between two points can b

Pointers to members, P o i n t er s to Members: In C a pointer is...

P o i n t er s to Members: In C a pointer is created  to locate  the address of another variable  for faster access. Consider the following example. int x, *p; p =

Padovan string ., #questio#A Padovan string P(n) for a natural number n is ...

#questio#A Padovan string P(n) for a natural number n is defined as: P(0) = ‘X’ P(1) = ‘Y’ P(2) = ‘Z’ P(n) = P(n-2) + P(n-3), n>2 where + denotes string concate

Computes the ackermann-peter a m-n function, (a) Write a procedure that com...

(a) Write a procedure that computes the Ackermann-Peter a(m,n) function. (b) Write a helper procedure that only allows the calculation of the Ackermann-Peter function for 0≤m

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd