Implement a min-heap, Data Structure & Algorithms

Assignment Help:

Description

A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following operations

  • size, isEmpty, min
  • insert
  • removeMin

We can describe the priority queue ADT using the following Java Entry class and interface:

1 import java.lang.Comparable;

2

3 /**

4 * When items are added to the heap, you should create an Entry object

5 * to hold the key and value and store this in the appropriate node

6 */

7 public class Entryextends Comparable,V> {

8 protected K key;

9 protected V value;

10 public MyEntry(K k, V v) { key = k; value = v; }

11 public K getKey() { return key; }

12 public V getValue() { return value; }

13 public String toString() { return "(" + key + "," + value + ")"; }

14 }

15

16 public interface PriorityQueueextends Comparable,V> {

17 /** Returns the number of items in the priority queue. */

18 public int size();

19 /** Returns whether the priority queue is empty. */

20 public boolean isEmpty();

21 /** Returns but does not remove an entry with minimum key. */

22 public Entry min();

23 /** Inserts a key-value pair and return the entry created. */

24 public Entry insert(K key, V value);

25 /** Removes and returns an entry with minimum key. */

26 public Entry removeMin();

27 }

 

The main operations (insert, removeMin) can be done in O(log n) with a heap, while the other operations of the priority queue ADT (isEmpty, size, or look up the min value) are constant time. In lectures we have seen how to implement a heap using an array-based implementation.

58_Implement a min-heap.png

Figure 1: 3-way heap example

For this assignment you must implement a min-heap using a using a tree-based implementation (similar to the binary tree class we have used in tutorials). This tree should be 3-way tree, where each node needs to have (at most) three children

Note that the definition of a 3-way heap is identical to that of a binary heap, except for allowing at most three children (see Figure ). As with a binary tree, every node must have all of its children, except for the nodes at the last levels of the tree. In more detail, your task is to

1. Design a 3-way tree structure that you will use for building your heap. You can use code provided in the book. You can use any helper data structures that you need (linked lists, arrays etc.), but you must implement the tree structure yourself.

2. Implement your design for a generic 3-way heap in a class called ThreewayHeap. You will need to implement all operations (insert, removeMin, isEmpty, etc.) in the supplied interface and skeleton for the 3-way heap. In most cases the extension is straightforward from binary heaps, with certain extra cases that you need to check.

3. Include a method in your heap to print out a visual representation in DOT format (helpful for testing/debugging purposes).

4. Design test cases for your new heap structure, used as a priority queue

5. Use the provided test code on your implementation


Related Discussions:- Implement a min-heap

Mapping constain, one to many one to one many to many many to one

one to many one to one many to many many to one

Rooted tree, It does not have any cycles (circuits, or closed paths), which...

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be co

Illustrate hls colour model, HLS Colour Model  This model has the doub...

HLS Colour Model  This model has the double-cone representation shown in Figure 3.40. The three colour parameters in this model are called hue (H), lightness (L), and Saturati

Define the term - array, Define the term - Array A fixed length, ord...

Define the term - Array A fixed length, ordered collection of values of same type stored in contiguous memory locations; collection may be ordered in several dimensions.

Shortest path dijkstras algorithm, * Initialise d & pi* for each vertex ...

* Initialise d & pi* for each vertex v within V( g ) g.d[v] := infinity  g.pi[v] := nil g.d[s] := 0; * Set S to empty * S := { 0 }  Q := V(g) * While (V-S)

Depth first search and breadth first search, Q. Illustrate the result of ru...

Q. Illustrate the result of running BFS and DFS on the directed graph given below using vertex 3 as source.  Show the status of the data structure used at each and every stage.

How to measure the algorithm efficiency, How to measure the algorithm's eff...

How to measure the algorithm's efficiency? It is logical to examine the algorithm's efficiency as a function of some parameter n showing the algorithm's input size. Instance

Conversion of general trees to binary trees, Taking a suitable example expl...

Taking a suitable example explains how a general tree can be shown as a Binary Tree. Conversion of general trees to binary trees: A general tree can be changed into an equiv

Sorting, explain quick sort algorithm

explain quick sort algorithm

Explain linked list, Linked List  A linked list is a linear collection...

Linked List  A linked list is a linear collection of data elements called nodes. The linear order is given by pointer. Every node is divided into 2 or more parts.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd