Illustration of code conversion, Computer Engineering

Assignment Help:

Program: A good illustration of code conversion: Write a program to convert a; 4-digit BCD number into its binary equivalent. BCD number is stored as a; word in memory location known as BCD. The result is to be stored in location HEX.

; ALGORITHM:

; Let us assume the BCD number as 4567

; Put the BCD number into 4, 16bit registers

; Extract the first digit (4 in this case)

; By masking out the other three digits. Since, its place value is 1000.

; So multiply by 3E8h (that is 1000 in hexadecimal) to get 4000 = 0FA0h

; Extract the second digit (5)

; By masking out the other three digits.

; Multiply by 64h (100)

; Add to first digit and get 4500 = 1194h

; Extract the third digit (6)

; By masking out the other three digits (0060)

; Multiply by 0Ah (10)

; Add to first and second digit to get 4560 = 11D0h

; Extract the last digit (7)

; By masking out the other three digits (0007)

; Add the first, second, and third digit to get 4567 = 11D7h

; PORTS    : None used

; REGISTERS: Uses CS, DS, AX, CX, BX, DX

 

THOU             EQU    3E8h    ; 1000 = 3E8h

DATA             SEGMENT

                        BCD    DW     4567h

                        HEX    DW?    ; Storage reserved for result

DATA ENDS

 

CODE SEGMENT

            ASSUME CS: CODE, DS: DATA

START:           MOV AX, DATA; initialise data segment

                        MOV DS, AX; using AX register

                        MOV AX, BCD; get the BCD number AX = 4567

                        MOV BX, AX; copy number into BX; BX = 4567

                        MOV AL, AH; place for upper 2 digits in AX = 4545

                        MOV BH, BL; place for lower 2 digits in BX = 6767

                                                ; split up numbers so that we have one digit 

                                                 ; In each register

                        MOV CL, 04; bit count for rotate

                        ROR AH, CL; digit 1 (MSB) in lower four bits of AH. 

                                                 ; AX = 54 45

                        ROR BH, CL; digit 3 in lower four bits of BH.

; BX = 76 67

                        AND AX, 0F0FH; mask upper four bits of each digit. 

                                                ; AX = 04 05

AND BX, 0F0FH; BX = 06 07

                        MOV CX, AX; copy AX into CX so that can use AX for 

                                                 ; Multiplication CX = 04 05

; CH comprises digit 4 having place value 1000, CL comprises digit 5 

 ; having place value 100, BH comprises digit 6 having place value 10 and 

 ; BL comprises digit 7 having unit place value.

 ; So attain the number as CH × 1000 + CL × 100 + BH × 10 + BL

 

MOV AX, 0000H; zero AH and AL

            ; Now multiply every number by its place 

            ; Value

MOV AL, CH; digit 1 to AL for multiply 

MOV DI, THOU; no immediate multiplication is allowed so 

     ; move thousand to DI

MUL DI; digit 1 (4)*1000

            ; result in DX and AX. Because BCD digit

            ; will not be greater than 9999, the result will 

            ; be in AX only. AX = 4000

 MOV DH, 00H; zero DH

 MOV DL, BL; move BL to DL, so DL = 7

 ADD DX, AX; add AX; so DX = 4007

 MOV AX, 0064h; load value for 100 into AL

 MUL CL; multiply by digit 2 from CL

ADD DX, AX; add to total in DX.  DX now comprises

            ; (7 + 4000 + 500)

 MOV AX, 000Ah; load value of 10 into AL

 MUL BH; multiply by digit 3 in BH

 ADD DX, AX; add to total in DX; DX comprises

            ; (7 + 4000 + 500 +60)

MOV HEX, DX; put result in HEX for return

MOV AX, 4C00h

INT 21h

CODE ENDS

END START


Related Discussions:- Illustration of code conversion

Simplified boolean expression, Simplified the Boolean Algebra (x + y)(x + z...

Simplified the Boolean Algebra (x + y)(x + z) simplifies to ? Ans. x + yz as simplified the Boolean Algebra expression. [(x + y) (x + z)] = xx + xz + xy + yz = x + xz + xy + y

Legacy systems and current infrastructure, Legacy systems and current infra...

Legacy systems and current infrastructure - Information System This problem is most easily understood using the everyday example of the rail ways where the rail network infras

Define device interface, Define device interface. The buffer registers ...

Define device interface. The buffer registers DATAIN and DATAOUT and the status flags SIN and SOUT are part of circuitry commonly called as a device interface.

Explain memory write operation, Q. Explain Memory Write operation? Memo...

Q. Explain Memory Write operation? Memory write operation transfers content of a data register to a memory word M selected by the address. Presume that data of register R1 is t

The six various application of stack, The six several application of stack ...

The six several application of stack in computer application is: 1.  Conversion of infix to postfix notation and vice versa. 2.  Evaluation of arithmetic expression. 3.

What is input - output instructions, Q. What is Input - Output Instructions...

Q. What is Input - Output Instructions? An I/O instruction is stored in memory of computer and is fetched as well as executed by processor producing an I/O-related command for

How can system improved when free lines are available, How can system impro...

How can system improved if one arrive at the probability of availability of free lines during the busy hour? Improvement can be made when the system is act as a loss system in

Parallelism conditions, Parallelism Conditions As discussed earlier, pa...

Parallelism Conditions As discussed earlier, parallel computing needs that the segments to be implemented in parallel must be free of each other. Thus, before implementing para

What is a recursively enumerable language, What is a recursively enumerable...

What is a recursively enumerable language?            The languages that is accepted by TM is said to be recursively enumerable (r. e) languages.  Enumerable means that the stri

Determine the hardware for multiplication, Determine the hardware for multi...

Determine the hardware for multiplication The hardware for multiplication consists of equipment given in Figure. The multiplier is stored in register and its sign in Q . The se

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd