Identify the surface for the equation , Mathematics

Assignment Help:

Identify the surface for each of the subsequent equations.

(a) r = 5

(b) r2 + z2 = 100

(c) z = r

Solution

(a)  In two dimensions we are familiar with that this is a circle of radius 5.  As we are now in three dimensions and there is no z in equation this means it is permitted to vary freely.  Thus, for any specific z we will have a circle of radius 5 centered on the z-axis.

Alternatively, we will have a cylinder of radius 5 centered on the z-axis.

(b) This equation will be simple to identify one time we convert back to Cartesian coordinates.

r2 + z2 = 100

x2 + y2 + z2  = 100

Thus, this is a sphere centered at the origin along with radius 10.

(c) Once again, this one won't be too bad if we convert back to Cartesian.  For reasons that will be clear eventually, we'll first square both sides, after that convert.

z2 = r2

z2 = x2 + y2

From the part on quadric surfaces we familiar with that this is the equation of a cone.


Related Discussions:- Identify the surface for the equation

Determine the determinant of matrix, Example Determinant:   Determine ...

Example Determinant:   Determine the determinant of each of the following matrices. Solution : For the 2 x 2 there isn't much to perform other than to plug this in

Parent, Sam has 18 marbles. Dean has 3 marbles. Dean has ---- as many marbl...

Sam has 18 marbles. Dean has 3 marbles. Dean has ---- as many marbles as Sam?

Proof of the properties of vector arithmetic, Proof of the Properties of ve...

Proof of the Properties of vector arithmetic Proof of a(v → + w → ) = av → + aw → We will begin with the two vectors, v → = (v 1 , v 2 ,..., v n )and w? = w

Differential calculus finding limits, how can i evaluate this lim of x as x...

how can i evaluate this lim of x as x approaches to a

Linear graph, in the form of linear graph interpret the ralationship betwee...

in the form of linear graph interpret the ralationship between two quantities

Tower of hanoi problem, a) Write  a summary  on  Tower  of  Hanoi  Probl...

a) Write  a summary  on  Tower  of  Hanoi  Problem.  How  can  it  be solved using  recursion ?                  b) Amit goes to a grocery shop and purchases grocery for Rs. 23.

Explain basic concepts of parallel lines, Explain Basic Concepts of Paralle...

Explain Basic Concepts of Parallel Lines ? Parallel lines are defined in section 1.2 and we use "//" to denote it. From the definition, we can get the following two consequenc

Continuous random variable, Continuous Random Variable In the probabili...

Continuous Random Variable In the probability distribution the sum of all the probabilities was 1. Consider the variable X denoting "Volume poured into a 100cc cup from coff

Properties of definite integral, Properties 1.  ∫ b a f ( x ) dx = -∫ ...

Properties 1.  ∫ b a f ( x ) dx = -∫ b a f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral

PROBLEM SOLVING, The perimeter of a rectangular swimming pool is 60m. The l...

The perimeter of a rectangular swimming pool is 60m. The length of the pool is 4 m more than the width. What is the width of the pool?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd