How to make equations of conics easier to read, Mathematics

Assignment Help:

How to Make Equations of Conics Easier to Read ?

If you want to graph a conic sections, first you need to make the equation easy to read. For example, say you have the equation

4x2 + 64 = 40x + 9y2 .
You know that it's a conic section, because it's second-degree- in fact, if you've read the rest of this chapter, you can even figure out that it's a hyperbola. But it's not obvious what the graph looks like. Where's the center for example?

To make this equation easier to read, we need to get rid of the first-degree terms, by completing the square!

For example, the term - 40 x is a first-degree term. Let's get rid of it. Move it over to the left with the other x term (while we're at it, we'll go ahead and move all the variable to the left):
4x2 - 40x - 9y2 = -64.
Important: factor out the coefficient of x2 (from the x terms only) before attempting to complete the square!

4(x2 -10x) - 9y2 =-64.
Now, complete the square inside the parentheses.

4(x2 - 10x)-9y2 = -64
4((x-5) 2 - 25) - 9y2 = -64

and re-distribute the 4 (pay special attention to the way the 4 gets distributed to the new constant, -25, created when we completed the square!).

4(x - 5) 2 - 100 - 9y2 = -64
Then combine the constant terms:

4(x - 5) 2 - 9y2 = 36.
For this equations, there's no need to complete the square for the y terms, because there is no first-degree y term. Now divide both sides by the constant term:

(x- 5)2/9 -y2 /4 = 1

and finally, take the square roots of the constant factors 9 and 4 to bring them under the square symbol:

(x-5/3)2 -(y/2)2 = 1 (1)

I know, I know! You're saying, "what in the world is all this for?!" Well, take a look at the result (equation 1). It's in a very simple form. There are only three terms. One of the terms has only the variable x and is squared; same for the variable y. The constant term is just 1. In fact, the equation has been made as close as possible to the equation of the "standard" hyperbola,

x2 - y2 = 1,

except for some translation and scaling factors. (The graph is translated in the x-direction a distance 5, and is scaled in the x and y directions by factors of 3 and 2 respectively. I'm deliberately not showing you the graph here, because I want you to look at the equations!)


Related Discussions:- How to make equations of conics easier to read

Calculate the probability, Calculate the Probability A bag contains 80...

Calculate the Probability A bag contains 80 balls of such 20 are red, 25 are blue and 35 are white.  A ball is picked at random what is the probability that the ball picked is

Collecting and interpreting data, Q. How to Collecting and interpreting dat...

Q. How to Collecting and interpreting data? Ans. Collecting and interpreting data is the most important job of a statistician. There are many types of studies and differe

Statistics and probability, STATISTICS AND PROBABILITY : Statistics  ar...

STATISTICS AND PROBABILITY : Statistics  are the  only  tools  by  which  an  opening  can  be  cut  through  the formidable  thicket  of difficulties  that bars the  path  of

Relation between hieght, volume=(1/3)(pi)(radius of base)2(height) curved ...

volume=(1/3)(pi)(radius of base)2(height) curved surface area=(pi)(r)(l), r is radius of base and l is length of straight line connecting apex of cone with point on edge of base

Graph y = cos ( x ) - common graph, Graph y = cos (x) Solution: There ...

Graph y = cos (x) Solution: There actually isn't a whole lot to this one.  Given the graph for -4 ? ≤ x ≤ 4 ? . Note that we can put all values of x in cosine (that wo

Write first-order formulas over the relational symbols, Consider the unary ...

Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is a point and a (straight) line in the 2-dimensional space, r

How many feet huge is her dining room, Audrey measured the width of her din...

Audrey measured the width of her dining room in inches. It is 150 inches. How many feet huge is her dining room? There are 12 inches in a foot. Divide 150 by 12 to find out the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd