Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The tetrahedral arrangement of four ligands surrounding the metal ion may be visualized. It is clear that in tetrahedral field, none of the orbitals point exactly towards the ligands and therefore, the splitting of energy will be less that in octahedral field. The tree d-orbitals dxyand dyz and dzx are pointing close to the direction in which the ligands are approaching while the two orbitals and are lying in between the ligands. Therefore, the energies of the three orbitals will be raised while the energies of the two orbitals will be lowered. Thus, in the presence of octahedral field, the degeneracy of five d-orbitals splitting as: The two orbitals, and becomes stable and their energies are lowered. These are designated as 'e' orbitals. The three orbitals, dxy, dyz and dzx become unstable and their energies are raised. These are designated as 't2' orbitals. The magnitude of crystal field splitting is the difference between e and t2 orbitals and is designated as Δt, (the subscript indicating tetrahedral complexes). It is also measured in terms of Dq and Δt, = 10 Dq. If we compare the magnitude of crystal field splitting in octahedral and tetrahedral complexes (having same metal ion, ligands and metal ion-ligand distances), it has been observed that the crystal field splitting in octahedral complexes (Δt) is considerably less than in octahedral complexes (Δ0). It has been found to be Δt = 4/9 Δ0.There are two main reasons for the smaller value of crystal field splitting in tetrahedral than in octahedral complexes. In tetrahedral complexes there are four ligands while there are six ligands in octahedral complexes. Therefore, lesser ligands produce less crystal field splitting. The crystal field splitting in tetrahedral field is about two third of the octahedral field. In tetrahedral field, none of the orbitals is pointing directly towards the ligands and, therefore, splitting is less.Since the magnitude of crystal field splitting in tetrahedral field is quite small and is always less the pairing energy, therefore, the pairing of electrons will never be energetically favourable. Thus; all the tetrahedral complexes are high spin complexes. No tetrahedral complex with low spin has been found to exist.
Q. How many centigrams are in 5 kilograms? Two conversion factors are essential to solve this problem. Keep in mind that there are 1000 grams in a kilogram and 100 centigrams i
Why p-nitro toluene is higher boiling point than o-nito toluene ? Ans) The term hydrogen bonding is used to define dipole-dipole attractive forces of this type. The proton invol
How are the following sole produced (a) Sulphur sol (b) Collodion
Which of the following metal ions will have maximum number of unpaired electrons: (1) Fe +2 (2) Co +2 (3) Ni +2
Characteristics of homologous series (i) All the members of a series can be presented by the general formula. For instance, the members of the alcohol family are illustrated b
explanation of the conductometric curve plotted for AgNO3 and KCL
glutamic acid standard estimation protocol
explain diversity and magnitude of organic compounds?
can dipole induce dipole forces present between non polar atom?
Q. What is gluten? What is gluten? Certainly you know that gluten is the protein found in wheat. Gluten is more or less made up of equal parts of gliadin and glutenin. Look up
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd