Heat transfer situation, Mechanical Engineering

Assignment Help:

The aim of this project is for you to discover how to use a spreadsheet to "model" a typical engineering problem, in this case a heat transfer situation. And to discover how this model can be used to solve problems that would otherwise require lengthy analytical or trial and error solutions.  The model can then be used as a design/analysis tool to try out various "what if" scenarios. Hot oil is used as an alternative to steam for providing process heat in some industries.  In our scenario the hot oil is being pumped to the process equipment through an insulated pipe and we want to determine the rate of heat loss per metre of pipe. The pipe is made from mild steel and is insulated with fibreglass and clad with stainless steel. Heat is being lost from the stainless steel cladding surface by convection and by radiation. The initial problem is to determine the heat loss and cladding surface temperature for various thicknesses of the fibreglass insulation.

2200_Heat Transfer Situation.png

The following data is given: hot oil temperature, ...................................... 180°C

steel pipe internal diameter, ..................................................... 80 mm

steel pipe external diameter, .................................................... 90 mm

pipe length,     ................................................................................. nominal, 1 m

inside convection heat transfer coefficient, ............................. 50 W/m2°C

steel pipe thermal conductivity, .......................................... 35 W/m°C

initial fibreglass insulation thicknesses  ........................................... 25 mm

insulation thermal conductivity, ......................................... 0.039 W/m°C

stainless steel cladding thickness ................................................... 2.6 mm

stainless steel cladding thermal conductivity,      ........................ 14 W/m°C

stainless steel emissivity, .................................................... 0.2

outside convection heat transfer coefficient,  ........................ 18 W/m2°C

ambient/surrounding surface temperature, ......................... 22°C

1727_Heat Transfer Situation1.png

At first glance this looks to be a relatively simple problem, however to solve it we need to find the surface temperature,    before we can find the heat loss,.  To solve for analytically would require the solution of a polynomial (quartic) equation.  With the spreadsheet we can solve this fairly easily using a trial and error approach or using one of the advanced tools available in Excel to automate this process...

Specific requirements:

You are required to:
Set up a spreadsheet model of the heat transfer situation, using Microsoft Excel, as detailed below.

Write a Report (Word document) with comments and results as also detailed below.
 
1. Spreadsheet Model

Set up your spreadsheet model of the heat transfer situation with an area for input values (all of the data given above), an area for intermediate answers (eg radii, Qint, Qconv, Qrad), and an area for the final results, Ts and Qloss.  Your model should be set up to be as flexible as possible to produce answers for     and       for a given insulation thickness. (Imagine other engineers might use your spreadsheet as a tool for similar heat loss situations, so make it clear, easy to use and helpful).

In your Report (Word document) :

Explain how you set up the spreadsheet and what "advanced" functions or tools you used, and how you used them to solve for  s  and  loss for a given insulation thickness.

Provide a table summarising your results ( Ts and Qloss ),  for the following insulation thicknesses:

25 mm, 50 mm, 75 mm and 100 mm.


Related Discussions:- Heat transfer situation

Optimization, consider the following LPP max z=9x1+8x2+5x3 subject to 2x1+3...

consider the following LPP max z=9x1+8x2+5x3 subject to 2x1+3x2+x3 5x1+4x2+3x3 x1,x2,x3>_0 (a)solve using simlex method (b)hence using the sesitivity analysis,find the new optimal

Dynamics, A rectangular plate has two holes of dimensions shown and is rele...

A rectangular plate has two holes of dimensions shown and is released from the position shown. The plate is hinged about a horizontal axis and can rotate in the vertical plane. An

Expression for normal and shear stress, Expression for normal and shear str...

Expression for normal and shear stress: Derive expression for normal and shear stress on the plane AE inclined at an angle B with AB subjected to the direct stresses of compr

What do you mean by newtons rings, When a Plano-convex lens of large radius...

When a Plano-convex lens of large radius of curvature is placed on a glass plate with its convex surface, a thin air film of gradually increasing thickness is formed between the up

Explain the creation phase of paver machine, Creation phase of Paver machin...

Creation phase of Paver machine: Objective: "To generate alternative methods for providing the function, through creative thinking, brainstorming and even speculation."

Calculate diameter of runner, A radically inward flow turbine working under...

A radically inward flow turbine working under a head of 10 m and running at 250 rpm develops 185 KW at the turbine shaft. At inlet tip of the runner vane, the peripheral velocity o

Technical limitations of extension of screw conveyor, Technical Limitations...

Technical Limitations of Extension of screw conveyor Technical Limitations: Breakdown of hinged joint at intermediate condition of link. ?Not proper extension of coaxi

Computation for the magnitude, A horizontal line ABCD measuring 9m is acted...

A horizontal line ABCD measuring 9m is acted upon by forces of magnitude 400, 600, 400 and 200 N at points A, B, C, D respectively with downward direction. These point are so locat

Why we need additives explain, Q. Why we need additives explain? Additi...

Q. Why we need additives explain? Additives are the materials added in small quantities to the moulding sand in order to enhance its exiting properties and to impart to it spec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd