Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Combining simultaneous and sequential moves, Combining Simultaneous and...

Combining Simultaneous and  Sequential Moves The material in this chapter covers a variety of issues that require some knowledge of the analysis of both sequential- move

Bayes rule, Treating probability as a logic, Thomas Bayes defined the follo...

Treating probability as a logic, Thomas Bayes defined the following: Pr(X|Y)=Pr(Y|X)Pr(X)/Pr(Y) For example, probability that the weather was bad given that our friends playe

Game theory equilibrium exercise, Exercise 1 a) Pure strategy nash equi...

Exercise 1 a) Pure strategy nash equilibrium in this case is Not Buy, bad ( 0,0) as no one wants to deviate from this strategy. b) The player chooses buy in the first perio

Dutch auction, A type of initial worth auction during which a "clock" initi...

A type of initial worth auction during which a "clock" initially indicates a worth for the item for sale substantially beyond any bidder is probably going to pay. Then, the clock g

All pure nash equilibrium for strategic form game, write a program in c tha...

write a program in c that takes n number finite players using gambit format and output is to be all pure strategy nash equilibrium

Japanese auction, A type of sequential second worth auction, just like an E...

A type of sequential second worth auction, just like an English auction during which an auctioneer frequently raises the present worth. Participants should signal at each worth lev

Fighting for survival, Two animals are fighting over a prey. The prey is wo...

Two animals are fighting over a prey. The prey is worth v to each animal. The cost of fighting is c1 for the first animal (player 1) and c2 for the second animal (player 2). If the

Repeated game, When players interact by enjoying an identical stage game (s...

When players interact by enjoying an identical stage game (such because the prisoner's dilemma) varied times, the sport is termed a repeated game. not like a game played once, a re

Calculate the expected payout, James and Dean are playing the Chicken game....

James and Dean are playing the Chicken game. They have noticed that their payout for being perceived as "tough" depends on the size of the crowd. The larger the crowd, the "cooler"

Bid, . A bid is an sign by a potential buyer of the price the buyer is read...

. A bid is an sign by a potential buyer of the price the buyer is ready to pay for the object being auctioned. In a Procurement Auction, the bid is an sign of the price a seller is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd