Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Strategic kind, The strategic (or normal) kind may be a matrix illustration...

The strategic (or normal) kind may be a matrix illustration of a simultaneous game. for 2 players, one is that the "row" player, and also the different, the "column" player. every

Consolidation, For the section on dynamic games of competition, you can beg...

For the section on dynamic games of competition, you can begin by asking if anyone in the class has played competi- tive tennis (club or collegiate or better); there is usually one

Free rider / free riding , The notion that those that don't contribute to s...

The notion that those that don't contribute to some project might nevertheless get pleasure from it (free riders), evidenced in games like the tragedy of the commons and public pro

Nash Equilibria, Two people are engaged in a joint project. If each person ...

Two people are engaged in a joint project. If each person i puts in the effort xi, the outcome of the project is worth f(x1, x2). Each person’s effort level xi is a number between

Cardinal payoffs, Cardinal payoffs are numbers representing the outcomes of...

Cardinal payoffs are numbers representing the outcomes of a game where the numbers represent some continuum of values, such as money, market share or quantity. Cardinal payoffs per

Find the quantities that firm is selling – equilibrium price, 1. Two firms,...

1. Two firms, producing an identical good, engage in price competition. The cost functions are c 1 (y 1 ) = 1:17y 1 and c 2 (y 2 ) = 1:19y 2 , correspondingly. The demand functi

Paired prisoners'' dilemma, Paired Prisoners' Dilemma Students can be p...

Paired Prisoners' Dilemma Students can be paired off and instructed to play several ver-sions of a particular game with a prisoners' dilemma structure.Provide each pair with a

Game playing in class-equilibrium payoffs are (4, Equilibrium payoffs are (...

Equilibrium payoffs are (4, 5). Player A’s equilibrium strategy is “S then S if n and then N if n again.” Player B’s equilibrium strategy is “n if S and then n if S again and then

Game playing in class-2 players take turns choosing a number, Problem:-Two ...

Problem:-Two players take turns choosing a number between 1 and 10 (inclusive), and a cumulative total of their choices is kept. The player to take the total exactly to 100 is the

Game assignment, About assignment The goal of this assignment is for th...

About assignment The goal of this assignment is for the student to propose a new game of your own and to be able to present their ideas in clear and convincing manner. This pro

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd