Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Stag hunt , Scenario The French thinker, Jean Jacques Rousseau, presente...

Scenario The French thinker, Jean Jacques Rousseau, presented the subsequent state of affairs. 2 hunters will either jointly hunt a stag (an adult deer and rather massive meal)

Imperfect data, A sequential game is one among imperfect data if a player d...

A sequential game is one among imperfect data if a player doesn't grasp precisely what actions different players took up to that time. Technically, there exists a minimum of one da

Find the quantities that firm is selling – equilibrium price, 1. Two firms,...

1. Two firms, producing an identical good, engage in price competition. The cost functions are c 1 (y 1 ) = 1:17y 1 and c 2 (y 2 ) = 1:19y 2 , correspondingly. The demand functi

Determine the linear regression function of y on x, QUESTION ONE. (a) Th...

QUESTION ONE. (a) The probability that, a bomber hits a target on a bombing mission is 0.70 Three bombers are sent to bomb a particular target. (i)  What is the probabilit

Common information, An item of information of data in a very game is common...

An item of information of data in a very game is common grasp ledge if all of the players realize it (it is mutual grasp ledge) and every one of the players grasp that each one dif

Bidder''s choice, A multiunit auction mechanism for assigning heterogeneous...

A multiunit auction mechanism for assigning heterogeneous (different) objects. The highest bidder in the first round selects one item among those offered for sale. Then, a second r

Game :the tire story, GAME 2 The Tire Story Another game that we have ...

GAME 2 The Tire Story Another game that we have successfully played in the first lecture is based on the “We can’t take the exam; we had a flat tire”. Even if the students hav

Backward induction, Backward induction is an iterative procedure for resolv...

Backward induction is an iterative procedure for resolving finite general form or sequential games. First, one decides the finest policy of the player who makes the last move of th

Application to strategic management, Game Theory has evolved since its orig...

Game Theory has evolved since its origins as an idea exercise for educational mathematicians. Taught in prime business faculties, economics departments, and even military academies

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd