Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Application to strategic management, Game Theory has evolved since its orig...

Game Theory has evolved since its origins as an idea exercise for educational mathematicians. Taught in prime business faculties, economics departments, and even military academies

Calculate the expected payout, James and Dean are playing the Chicken game....

James and Dean are playing the Chicken game. They have noticed that their payout for being perceived as "tough" depends on the size of the crowd. The larger the crowd, the "cooler"

Formulate the situation as strategic game - nash equilibrium, Two individua...

Two individuals use a common resource (a river or a forest, for example) to produce output. The more the resource is used, the less output any given individual can produce. Denote

Repeated game, When players interact by enjoying an identical stage game (s...

When players interact by enjoying an identical stage game (such because the prisoner's dilemma) varied times, the sport is termed a repeated game. not like a game played once, a re

Nash equilibrium, Assuming that there are only 2 airline companies in the w...

Assuming that there are only 2 airline companies in the world, Delta and US Airways, what is the ((Nash) Equilibrium) or price that each company in the following matrix will charge

Three words, if the first three words are "the boy''s down" what are the la...

if the first three words are "the boy''s down" what are the last three words?

Two player problem of points set up - game theory, a) Show that A c...

a) Show that A counting proof could be fun(?). But any old proof will do. (Note that the coefficients (1,2,1) in the above are just the elements of the second row of Pas

Identify the pure strategy equilibria, Consider the following three games (...

Consider the following three games (Chicken, Matching Pennies, Stag Hunt): Chicken Player 2 Player 1 D V D -100;-100 10;-10 V -10; 10 -1;-1 Matching Pennies Pla

Minimum bid, A minimum bid is that the smallest acceptable bid in an auctio...

A minimum bid is that the smallest acceptable bid in an auction. a gap bid, the primary bid placed within the auction, should be a minimum of as high because the minimum bid or the

Personal theory of international trade, I have an assignment in which I hav...

I have an assignment in which I have to invent a new international trade theory. For me, the absolute advantage of Adam Smith is really good, and I want to find a solution if a cou

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd