Green –beard strategy, Game Theory

Assignment Help:

1  A, Explain how a person can be free to choose but his or her choices are casually determined by past event

2  B , Draw the casual tree for newcomb's problem when Eve can't perfectly detect Adam's casual history. The probabilities of Eve rightly or wrongly detecting whether adam will later open only the black box instead of opening both boxes are respectively denoted r and w. recal that L denotes the smaller amount of money always in the clear box and M denotes the larger amount of money that eve might might put in side the opaque box  E A

C, Derive the two expected payoffs formulas E A (1B / r, w) and E A ( (2B /r,w) and use them to solve for another formula that equals the smallest value of M (denoted M*) required in order for Adam's expected payoff from opening only the opaque box to exceed that from opening both boxes by a multiple of as least ( a sign that looks like derivative)  L     what is the resulting formula for M*. finally suppose (L, sign that looks like derivative I don't know   )  = (300, 95), (r,w)=(.58, .43) and use the formula for M* to calculate the numerical value of M* for this case

 2.   A, Suppose a CD player player tries to detect whether its partner is C player instead of a DD player by looking for external signals that are at least as typical for DD players than DD players than for cd players draw a diagram tp explain how two boundariesb.L and bu  are optimally determined by the minimum likehood ration Lmin. Show on the diagram where it is optimal to respond C versus D. Also explain what happens to the boundries when detection becomes more cautious by raising the minimum likehood ration

b. What is meaning of the LDD detection strategy

c. What is the main problem with the green -beard strategy? Explain how the LDD strategy overcomes this problem

 3. A. If CD players are able to use the LDD strategy better than pure chance then explain what happens to the signal reliability ration as a CD player detects more cautiously

 b. Assume a population contains either CD ot DD players where each player is randomly matched with partner taken from the whole population. Also assume the fear and greed payoff differences are equal. What are the expected payoff formulas for CD players  [ denoted  E(DD/x CD  ) ]  depending on the fraction of CD players in the population, denoted x CD  \

c. Use expected payoff formulas of part C to algebraically derive an inequality for the signal reliability ration r/w that determines when the CD  players will outperform the DD players. Thenuse this inequality with Part A, to explain how CD players can always outperform DD players starting from any positive initial fraction of CD players  x CD  > 0.

 4, A. Use the inequality derived for part C question 3; to obtain an inequality required x *CD  = 1 to remain stable against DD invaders. Also draw the ROC diagram discussed in class for visually representing this stability inequality

B. Explain how a diagram similar to that shown in part A can be used to derive a prediction of what will happen to the CD players equilibrium probability of cooperating if the fear and greed pay off difference decrease relative to the cooperation payoff difference

C. Again explain how a diagram similar to that shown in Part A can be used to derive a prediction of what will happen to the CD player equilibrium probability of cooperating if they exchange email messages instead of talking talk face to face


Related Discussions:- Green –beard strategy

Game:claim a pile of dimes, GAME 1 Claim a Pile of Dimes Two players A...

GAME 1 Claim a Pile of Dimes Two players Aand B are chosen. The instructor places a dime on the table. Player A can say Stop or Pass. If Stop, then A gets the dime and the gam

Games sequential moves-game played b/w pitcher and batter, Problem: Consid...

Problem: Consider a (simplified) game played between a pitcher (who chooses between throwing a fastball or a curve) and a batter (who chooses which pitch to expect). The batter ha

Find the nash equilibria - strategic game, Two people are engaged in a join...

Two people are engaged in a joint project. If each person i puts in the e ort xi, a nonnegative number equal to at most 1, which costs her c(x i ), the outcome of the project is wo

Perfect data, A sequential game is one among one in all if just one player ...

A sequential game is one among one in all if just one player moves at a time and if every player is aware of each action of the players that moved before him at every purpose. Tech

Dominant strategy equilibrium, The following is a payoff matrix for a non-c...

The following is a payoff matrix for a non-cooperative simultaneous move game between 2 players. The payoffs are in the order (Player 1; Player 2): What is the Dominant Strat

Find all ne of the game, 1. Find all NE of the following 2×2 game. Determin...

1. Find all NE of the following 2×2 game. Determine which of the NE are trembling-hand perfect. 2. Consider the following two-person game where player 1 has three strategie

Application to business strategy, Game Theory has evolved since its start a...

Game Theory has evolved since its start as a thought exercise for academic mathematicians. Taught in economics departments , top business schools, and the strategic analysis, even

Symmetric game, Scenario Any game during which the identity of the playe...

Scenario Any game during which the identity of the player doesn't amendment the ensuing game facing that player is symmetric. In different words, every player earns identical pa

Bidder''s choice, A multiunit auction mechanism for assigning heterogeneous...

A multiunit auction mechanism for assigning heterogeneous (different) objects. The highest bidder in the first round selects one item among those offered for sale. Then, a second r

Write a bouncing ball video game, Write a bouncing ball video game. The gam...

Write a bouncing ball video game. The game is similar to the one described and depicted in The balls bounce within the screen where the two horizontal walls are fixed. The two v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd