Graphical method- minimization example, Operation Research

Assignment Help:

Minimization

Example 

A farmer is advised to utilize at least 900 kg of mineral A and 1200 kg of mineral B to increase the productivity of crops in his fields. Two fertilizers, F1 and F2 are available at a cost of Rs.60 and Rs.80 per bag. If one bag of F1 contains 20 kg of mineral A and 40 kg of mineral B, and one bag of F2 contains 30 kg each of mineral A and B, then how many bags of F1 and F2 should the farmers use to fulfill the requirement of both the types of minerals at an optimum low cost?

Let us formulate this problem in terms of mathematical equations or inequalities. As the farmer has to decide on the number of bags of fertilizers F1 and F2, the variables may be defined as:

         q1 = number of bags of F1

         q2 = number of bags of F2

The objective function is minimization, that is, cost reduction. Here the total cost is 60q1 + 80q2. The restriction is that at least 900 kg of mineral A and 1200 kg of mineral B is required. Hence we get the following constraints:

20q1 + 30q2 > 900 - requirement for mineral A

40q1 + 30q2 > 1200 - requirement for mineral B

As we cannot have negative quantities, q1 > 0 and q2 > 0,

the problem may be represented as

Minimize Z : 60q1 + 80q2                                              .....(1)

Subject to constraints:                           

20q1 + 30q2 > 900

40q1 + 30q2  > 1200                                                     .....(2)

q1 >  0, q2     >  0                                                        .....(3)

We have to find the values of q1 and q2 which will satisfy constraints (2) and (3) and at the same time, minimize function (1).

After formulating the problem, each inequality is converted to an equality. Then any arbitrary value (say, 0) is assigned to one variable in the equation and the corresponding value of the other variable is found. Consider the constraints which are written as equalities: 20q1 + 30q2 = 900. If q1 = 0, we get q2 = 30 and if q2 = 0, we have q1 = 45. These two points are now plotted on a graph with q1 on X-axis and q2 on  Y-axis.  Joining the two points (0, 30) and (45, 0), we get a straight line corresponding to the above equation.

Consider the equation: 40q1 + 30q2 = 1200. If we take q1 = 0, then q2 = 40, and if q2 = 0, then q1 = 30. Joining the two points (0,40) and (30,0), we get another straight line corresponding to the above equation. The next step is to graph the feasible region which satisfies all the constraints. For this, we should take the co-ordinates of the point of origin (0,0) and substitute in each inequality. If the statement is found to be true, shade the region towards the origin or else shade the region away from the origin.

Take the constraint 20q1 + 30q2 > 900. If we substitute (0,0), we get (20 x 0) + (30 x 0) a ≥ 900. Since the statement is not true, we shade the region away from the origin. Similarly, for constraint 40q1 + 30q2 > 1200, we shade the region away from the origin.

Figure 

2015_minimization.png

The region which  satisfies all the constraints is the feasible region. Here, the region above ABC (that is, the intersection of all shaded regions) is the feasible region. Now we should compute the co-ordinates of the corner points B, A and C of the feasible region. We know that the co-ordinates of B are (0,40) and that of C are (45,0).  For point A, which is an intersection of the two straight lines of equations 20q1 + 30q2 = 900 and 40q1 + 30q2 = 1200, we find the co-ordinates by solving the simultaneous equations

         20q1 + 30q2 = 900            (1)

         40q1 + 30q2 = 1200          (2)

Subtracting equation (1) from (2) we get 20q1 = 300. Therefore, q1 = 15 and q2 = 20.  Hence the co-ordinates of A are (15,20).

The next step is to substitute the co-ordinates of the corner points of the feasible region in the objective function and choose the optimal solution (that is, the values that give the lowest cost).

We thus get the following volumes:

At     A (15, 20), Z = 15 x 60 + 20 x 80  = Rs.2,500,

         B (0, 40), Z   = 0 x 60 + 40 x 80     = Rs.3,200 and

         C (45, 0), Z   = 45 x 60 + 0 x 80     = Rs.2,700

From the above calculations, we find that Z assumes a minimum value at A (15,20).  Therefore, the optimal value of q1 = 15 and q2 = 20. Hence the farmer should buy 15 bags of fertilizer F1 and 20 of fertilizer F2 in order to meet the optimal requirements.


Related Discussions:- Graphical method- minimization example

MB0048, A paper mill produces two grades of paper viz., X and Y. Because of...

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

Seven step to a successful presentation, Seven Step to a Successful Present...

Seven Step to a Successful Presentation There  are seven  basic  step which  need to  kept  in mind at the  time of  making  a presentation. How  successful one  is at eh end

Integer programming, An integer programming problem is identical to a linea...

An integer programming problem is identical to a linear programming problem except that one or more decision variables are constrained to take integer values. Such problems cannot

Explain briefly the term sensitivity analysis, Question: (a) A company...

Question: (a) A company sells three different products X, Y and Z. The company makes a profit of Rs. 35, Rs. 50 and Rs. 60 per unit on products X, Y and Z respectively. The th

Preparation of script - report writing presentation , Preparation of Script...

Preparation of Script   The most  tedious  and arduous takes is  the  preparation of the  script. While  you have  all the ideas and  points  will should  stored  up in the  mi

#title, WHOM DO YOU THINK RAJENDER WILL EAT WITH? WHY?

WHOM DO YOU THINK RAJENDER WILL EAT WITH? WHY?

Components included in the reseach proposal, Components Included in the Pro...

Components Included in the Proposal Personnel In case the proposal is addressed to the funding agencies, the qualifications of the key project personnel for study should be

Simplex method, Solve the following Linear Programming Problem using Simple...

Solve the following Linear Programming Problem using Simplex method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

Assumption of f- test- hypothesis testing, Assumption of F- Test The  ...

Assumption of F- Test The  theoretical assumption on which  F test  is based are: 1.The populations for  each sample must  be normally  distributed  with  identical  mean

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd