Generalization of the interpretation of local automata, Theory of Computation

Assignment Help:

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible symbols that may appear at any given point depends only on the previous k - 1 symbols. Here this is realized by taking the factors to be tiles and allowing a tile labeled σ2, . . . , σk, σk+1 to be placed over the last k-1 symbols of a tile labeled σ1, σ2, . . . , σk. Again, the process starts with a tile labeled 'x  ' and ends when a tile labeled '  x' is placed. Strings of length less than k - 1 are generated with a single tile.

Note that there is a sense in which this mechanism is the dual of the k-local Myhill graphs. In the graphs, the vertices are labeled with the pre?x of the factors in the automaton and the edges are labeled with the last symbol of the label of the node the edge is incident to. It is those edge labels that call out the string being recognized and the initial k - 1 positions of the string label the edges incident from ‘x'. Here it is the exposed symbols that call out the string being generated and these are the initial symbols of the tiles. And the ?nal k -1 symbols of the string are the symbols labeling the last tile, the one labeled with ‘x'.


Related Discussions:- Generalization of the interpretation of local automata

First model of computation, Computer has a single unbounded precision count...

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Two-tape turing machine, Let there L1 and L2 . We show that L1 ∩ L2 is CFG ...

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

Strictly local languages, We have now de?ned classes of k-local languages f...

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Differentiate between dfa and nfa, Differentiate between DFA and NFA. Conve...

Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.

Universality problem, The Universality Problem is the dual of the emptiness...

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd