General perspective transformation with cop at the origin, Computer Graphics

Assignment Help:

General Perspective transformation with COP at the origin

Here we suppose the given point P(x,y,z) be projected like P'(x',y',z') on the plane of projection. The center of projection is at the origin, determined by O(0,0,0). Let the plane of projection explained by the normal vector N=n1I+n2J+n3K and passing via the reference point R0(x0,y0,z0). By Figure 21, the vectors PO and P'O have the similar direction. The vector P'O is a factor of PO. Thus they are associated through the equation of: P'O = α PO, comparing elements we have x'=α.x   y'=α.y   z'=α.z we here get the value of α.

1015_General Perspective transformation with COP at the origin.png

We know about the equation of the projection plane passing via a reference point R0 and having a common vector as N=n1I+n2J+n3K is specified by PR0.N=0, which is:

(x-x0,y-y0,z-z0).( n1,n2,n3)=0 which is n1.( x-x0)+ n2.( y-y0)+ n3.( z-z0)=0 ---------( )

Because P'(x',y',z') lies upon this plane, hence we have as:

n1.( x'-x0)+ n2.( y'-y0)+ n3.( z'-z0)=0

Once substituting x'=α.x ;  y'=α.y ;  z'=α.z, we have as:

α =(n1.x0+ n2.y0+ n3.z0)/(n1.x+ n2.y+ n3.z) = d0/(n1.x+ n2.y+ n3.z)

This projection transformation cannot be shown as a 3x3 matrix transformation. Conversely, by utilizing the HC representation for 3-D, it can write in projection transformation as:

439_General Perspective transformation with COP at the origin 1.png

Hence, the projected point P'h(x',y',z',1) of given point Ph(x, y, z, 1) can be acquired as:

 

P'h = Ph. Pper,N, Ro = [x, y, z, 1]  

262_General Perspective transformation with COP at the origin 2.png

= [d0.x, d0.y, d0z, (n1.x + n2.y + n3.z)] ;

Here d0 = n1.x0 + n2.y0 + n3. z0.


Related Discussions:- General perspective transformation with cop at the origin

Applications that can handle bitmap data, Applications that can handle Bitm...

Applications that can handle Bitmap Data Hundreds of applications are there in the market which can be used to modify or make bitmap data. For illustration: Adobe Photo Shop, C

Display devices - graphics hardware, Display Devices - Graphics Hardware ...

Display Devices - Graphics Hardware Since the importance of output and input devices has been discussed over, so let us now focus our discussion particularly on display dev

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

Homogeneous coordinates, What are the uses of homogeneous coordinates? Conv...

What are the uses of homogeneous coordinates? Convert translation rotation and scaling in homogeneous coordinates. In mathematics homogeneous coordinates introduced by August

Which main components are needed for computer graphics, Can you tell which ...

Can you tell which main components (hardware and software) are needed for computer graphics? Besides the computer, some special devices and software may be needed especially fo

Ambient reflection-polygon rendering & ray tracing methods , Ambient Reflec...

Ambient Reflection-Polygon Rendering & Ray Tracing Methods When we go for the examiner of light effects, so surroundings play a significant role and it is assumed as there

Event driven devices - polling, Event Driven Devices - Polling Pollin...

Event Driven Devices - Polling Polling: The status of all devices is periodically checked in a repetitive manner through a polling loop. While an event happens, the loop is

What are the important properties of bezier curve, What are the important p...

What are the important properties of Bezier Curve?  It requires only four control points It always passes by the first and last control points The curve lies enti

What is scan line algorithm, What is scan line algorithm?  One way to f...

What is scan line algorithm?  One way to fill the polygon is to apply the inside test. I.e. to check whether the pixel is inside the polygon or outside the polygon and then hig

Three dimensional concepts and display methods, Three Dimensional Concepts ...

Three Dimensional Concepts and Display Methods   Imagine yourself taking a picture by a camera.  What do you normally do?  You specify a viewpoint and view direction and then s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd