General perspective transformation with cop at the origin, Computer Graphics

Assignment Help:

General Perspective transformation with COP at the origin

Here we suppose the given point P(x,y,z) be projected like P'(x',y',z') on the plane of projection. The center of projection is at the origin, determined by O(0,0,0). Let the plane of projection explained by the normal vector N=n1I+n2J+n3K and passing via the reference point R0(x0,y0,z0). By Figure 21, the vectors PO and P'O have the similar direction. The vector P'O is a factor of PO. Thus they are associated through the equation of: P'O = α PO, comparing elements we have x'=α.x   y'=α.y   z'=α.z we here get the value of α.

1015_General Perspective transformation with COP at the origin.png

We know about the equation of the projection plane passing via a reference point R0 and having a common vector as N=n1I+n2J+n3K is specified by PR0.N=0, which is:

(x-x0,y-y0,z-z0).( n1,n2,n3)=0 which is n1.( x-x0)+ n2.( y-y0)+ n3.( z-z0)=0 ---------( )

Because P'(x',y',z') lies upon this plane, hence we have as:

n1.( x'-x0)+ n2.( y'-y0)+ n3.( z'-z0)=0

Once substituting x'=α.x ;  y'=α.y ;  z'=α.z, we have as:

α =(n1.x0+ n2.y0+ n3.z0)/(n1.x+ n2.y+ n3.z) = d0/(n1.x+ n2.y+ n3.z)

This projection transformation cannot be shown as a 3x3 matrix transformation. Conversely, by utilizing the HC representation for 3-D, it can write in projection transformation as:

439_General Perspective transformation with COP at the origin 1.png

Hence, the projected point P'h(x',y',z',1) of given point Ph(x, y, z, 1) can be acquired as:

 

P'h = Ph. Pper,N, Ro = [x, y, z, 1]  

262_General Perspective transformation with COP at the origin 2.png

= [d0.x, d0.y, d0z, (n1.x + n2.y + n3.z)] ;

Here d0 = n1.x0 + n2.y0 + n3. z0.


Related Discussions:- General perspective transformation with cop at the origin

General perspective transformation with cop at the origin, General Perspect...

General Perspective transformation with COP at the origin Here we suppose the given point P(x,y,z) be projected like P'(x',y',z') on the plane of projection. The center of pro

BINARY, WHAT THAT S MEANS 0001

WHAT THAT S MEANS 0001

Determine the transformation matrix for cavalier projection, Determine the ...

Determine the transformation matrix for: a) Cavalier projection with θ=45 0 , and b) Cabinet projection with θ=30 0    c) Draw the projection of unit cube for all transfor

Scan line algorithm - output primitives, Scan Line Algorithm A scan lin...

Scan Line Algorithm A scan line algorithm determines the overlap intervals of the polygon with each scan line to obtain interior points of the polygon for assigning those point

Bezier curves, find out points to the given control points

find out points to the given control points

Interfacing lcd liquid crystal display, Main Objectives: Interfacing...

Main Objectives: Interfacing LCD to the Micro-controller (PIC18F4520) Programming LCD by using C- language via MPLAB Sending data or command to the LCD Component

Non-zero accelerations - computer animation, Non-Zero Accelerations - Compu...

Non-Zero Accelerations - Computer Animation This method of simulating the motion is fairly helpful introducing the realistic displays of speed changes, particularly at the sta

What do you understood by the term graphic primitives, 1. What do you unde...

1. What do you understood by the term graphic primitives? Ans. Graphic primitives are the basic graphic objects that can be united in any number and method to produce a new i

Morphing - key frame systems, Morphing - Key Frame Systems Transformati...

Morphing - Key Frame Systems Transformation of object shapes from one form to the other is termed as morphing as short form of metamorphism. This method can be applied to any o

Refresh buffer, what is refresh buffer/ identify the content and organisati...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd