Fundamental theorem of integral facts , Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

 Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence,

ab f(x) dx = F(x) a|b = F(b) - F(a)

 Proof

First let g(x) = ax f (t) dt and then we get from Part I of the Fundamental Theorem of Calculus as g′(x) = f(x) and therefore g(x) is an anti-derivative of f(x) on [a,b]. Then assume that F(x) is any anti-derivative of f(x) on [a,b] which we need to select. Therefore, it means that we should have,

 g′ (x) = F′(x)

 So, by Fact 2 in the Mean Value Theorem section we get that g(x) and F(x) can be different by no more than an additive constant on [a, b].  Conversely, for a < x < b

F(x) = g(x) = c

Now since g(x) and F(x) are continuous on [a,b], if we get the limit of it as x → a+ and x → b-  we can notice that it also holds if x = a and x = b .

Hence, for a ≤ x ≤ b we know that F(x) = g(x) + c.  Let's utilize it and the definition of g(x) to do the subsequent.

F(b) - F(a) = (g(b) + c)- (g(a) + c)

= g(b) - g(a)

= ab f(t) dt  + aa f(t) dt

= ab f(t) dt  + 0

= ab f(x) dx

Notice that in the final step we used the fact as the variable used in the integral doesn't issue and therefore we could change the t's to x's.


Related Discussions:- Fundamental theorem of integral facts

Statistics, marks frequency 0-9 8 10-19 10 20-29 ...

marks frequency 0-9 8 10-19 10 20-29 14 30-39 28 40-49 46 50-59 25 60-69 17 70-79 9 80-89 2 90-99 1 (

Definition of the laplace transform, Definition Assume that f(t) is a ...

Definition Assume that f(t) is a piecewise continuous function. The Laplace transform of f(t) is denoted L{ f (t )} and defined by, There is an optional notation for L

Find and classify all the equilibrium solutions, Find and classify all the ...

Find and classify all the equilibrium solutions to the subsequent differential equation. y' = y 2 - y - 6 Solution First, get the equilibrium solutions. It is generally

If pth term of ap is q and qth term is p. p.t its nth term, If the p th te...

If the p th term of an AP is q and the q th term is p. P.T its n th term is (p+q-n). Ans:    APQ a p = q a q = p a n = ? a + (p-1) d = q a + (q-1) d = p

Differential equation - variation of parameters, Variation of Parameters ...

Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for

Problem word solving, Mrs. Jones and Mr. Graham had the same amount of mone...

Mrs. Jones and Mr. Graham had the same amount of money at first. After Mrs. Jones bought a computer that cost $2,055, she had 1/4 as much money as Mr. Graham. How much money di

Negative skewness-measure of central tendency, Negative Skewness It i...

Negative Skewness It is an asymmetrical curve whether the long tail extends to the left NB: In developed countries this frequency curve for the age distribution is charact

Solve the subsequent proportion, Solve the subsequent proportion: Exa...

Solve the subsequent proportion: Example: Solve the subsequent proportion for x. Solution: 5:x = 4:15 The product of the extremes is (5)(15) = 75. The produ

Do yall, do yall help kids in 6th grade

do yall help kids in 6th grade

Introduction to computers, What is a Computer? A computer is ...

What is a Computer? A computer is an electronic device which senses or accepts input data, performs operations or computations on the data in a pre-arranged sequence

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd