Fundamental theorem of integral facts , Mathematics

Assignment Help:

Fundamental Theorem of Calculus, Part II

 Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence,

ab f(x) dx = F(x) a|b = F(b) - F(a)

 Proof

First let g(x) = ax f (t) dt and then we get from Part I of the Fundamental Theorem of Calculus as g′(x) = f(x) and therefore g(x) is an anti-derivative of f(x) on [a,b]. Then assume that F(x) is any anti-derivative of f(x) on [a,b] which we need to select. Therefore, it means that we should have,

 g′ (x) = F′(x)

 So, by Fact 2 in the Mean Value Theorem section we get that g(x) and F(x) can be different by no more than an additive constant on [a, b].  Conversely, for a < x < b

F(x) = g(x) = c

Now since g(x) and F(x) are continuous on [a,b], if we get the limit of it as x → a+ and x → b-  we can notice that it also holds if x = a and x = b .

Hence, for a ≤ x ≤ b we know that F(x) = g(x) + c.  Let's utilize it and the definition of g(x) to do the subsequent.

F(b) - F(a) = (g(b) + c)- (g(a) + c)

= g(b) - g(a)

= ab f(t) dt  + aa f(t) dt

= ab f(t) dt  + 0

= ab f(x) dx

Notice that in the final step we used the fact as the variable used in the integral doesn't issue and therefore we could change the t's to x's.


Related Discussions:- Fundamental theorem of integral facts

Addition of unlike terms, In this case, the first point we have to re...

In this case, the first point we have to remember is that we do not get a single value when we add two or more terms which are unlike in nature. This certainly ob

Define tautology and contradiction, Define tautology and contradiction.  ...

Define tautology and contradiction.  Ans: If a compound proposition comprises two atomic propositions as components, after that the truth table for the compound proposition con

Fractions, if you have 1/5 of a candy bar and 4 friends how much will they ...

if you have 1/5 of a candy bar and 4 friends how much will they get

Given a differential equation will a solution exist?, All differential equa...

All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe

Quadratic equation, for what k, q.p. kx2-8x+k can be factored into real lin...

for what k, q.p. kx2-8x+k can be factored into real linear factors. kx2-8x+k

Rectilinear figures, Q1- different types of rectilinear figures? Q2- interi...

Q1- different types of rectilinear figures? Q2- interior and exterior angles of the polygon? Q3-relation between interior and exterior angles of polygons? Q4- properties of any fiv

Distance and Section Formulae, find the coordinates of points of tri-sectio...

find the coordinates of points of tri-section of the line joining the points (-3,0) and (6,6).

The mean value theorem for integrals, The Mean Value Theorem for Integrals ...

The Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then here is a number c in [a,b] thus, a ∫ b f(x) dx = f(c)(b -a) Proof Let's begin

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Calculate the monthly payment amount of the loan, Consider a student loan o...

Consider a student loan of $12,500 at a fixed APR of 12% for 25 years, 1. What is the monthly payment amount? 2. What is the total payment over the term of the loan? 3. OF

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd