Find the interval of validity, Mathematics

Assignment Help:

Solve the subsequent IVP and find the interval of validity for the solution.

y' + (4/x) y = x3 y2,       y(2) = - 1,  x > 0

Solution

Thus, the first thing that we require to do is get this into the "proper" form and it means dividing everything via y2.  Doing this provides,

y-2 y' + (4/x) y-1 = x3

The derivative and substitution that we'll require here is as:

n = y-1,                                                n' = -y-2y'

With this type of substitution the differential equation turns into:

- n '+ (4/x ) n = x3

Therefore as noted above it is a linear differential equation which we know how to resolve. We'll do the details on such one and after that for the rest of the illustrations in this section we will leave the details for you to fill in. If you require a refresher on solving linear differential equations so go back to which section for a rapid review.

There is the solution to this differential equation.

n '- (4/x ) n = - x3        ⇒         µ(x) = e-(4/x )dx = e-4In|x| = x-4

∫(x-4n)' dx = ∫-x-1dx       

x4n = - In|x| + c          ⇒         n (x) = cx4 - x4 In x

Remember that we dropped the absolute value bars upon the x in the logarithm due to the assumption that is x >0.

Now we require determining the constant of integration. It can be done in one of two methods. We can change the solution above in a solution in terms of y and after that use the original initial condition or we can change the initial condition into an initial condition in terms of v and then use that. Since we'll need to convert the solution to y's finally anyway and this won't add that a lot work in we'll do this that way.

Therefore, to get the solution in terms of y all we require to do is plug the substitution back in.  Doing it gives:

y-1 = x4 (c - In x)

We can solve for y at this point and after that apply the initial condition or apply the initial condition and after that solve for y. We'll commonly do this with the later approach thus let's apply the initial condition to find:

(-1)-1 = c24 - 24 In 2      ⇒         c= In 2 - 1/16

Plugging in for c and solving for y provides:

1449_Find the interval of validity.png

Remember that we did a little simplification into the solution. It will assists with determining the interval of validity.

Before determining the interval of validity though, we mentioned above which we could convert the original initial condition in an initial condition for n. Let's briefly talk regarding how to do such. To do that all we need to do is plug x = 2 in the substitution and after that use the original initial condition. Doing this provides,

n (2) = y-1(2) = (-1)-1 = -1

Thus in this case we found the same value for v which we had for y. Do not expect that to occur in general if you selected to do the problems in this way.

Okay, let's now determine the interval of validity for the solution. Initially we already identify that x > 0 and it implies that we'll avoid the problems of having logarithms of negative numbers and division through zero at x = 0. Hence, all that we need to worry regarding to then is division by zero in the next term and this will occur where,

1 + 16 In x/2 = 0

⇒ In x/2 = -1/16

⇒ x/2 = e -1/16

⇒ x = 2 e -1/16

≈ 1.8788

The two possible intervals of validity are after that

0 < x < 2 e -1/16

 2 e -1/16 < x < ∞

And as the second one contains the initial condition we identify that the interval of validity is so,

2 e -1/16 < x < ∞

Now there is a graph of the solution.

18_Find the interval of validity1.png


Related Discussions:- Find the interval of validity

Determine how many square centimeters, Determine how many square centimeter...

Determine how many square centimeters of paper are needed to make a label on a cylindrical can 45 cm tall with a circular base having diameter of 20 cm. Leave answer in terms of π.

What is equivalent of this temperature in degrees fahrenheit, The temperatu...

The temperature in Hillsville was 20° Celsius. What is the equivalent of this temperature in degrees Fahrenheit? This problem translates to the expression 3 {[2 - (-7 + 6)] + 4

How far is balloon from the shore, Steve Fossett is going the shores of Aus...

Steve Fossett is going the shores of Australia on the ?rst successful solo hot air balloon ride around the world. His balloon, the Bud Light Spirit of Freedom, is being escorted

Course work2 , (b) The arity of an operator in propositional logic is the n...

(b) The arity of an operator in propositional logic is the number of propositional variables that it acts on – for example, binary operations (e.g, AND, OR, XOR…) act on two propo

Solve the form ax2 - bx - c factoring polynomials, Solve the form ax 2 - b...

Solve the form ax 2 - bx - c factoring polynomials ? This tutorial will help you factor quadratics that look something like this: 2x 2 -3x - 14 (Leading coefficient is

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Quartic polynomial, Question: Let f be a quartic polynomial (ie. a poly...

Question: Let f be a quartic polynomial (ie. a polynomial of degree 4). Suppose that f has zeros at -2; 1; 3; 4 and that f(0) = 4. Sketch a graph of f. If f(x) is

Find the shortest paths in the digraph, 1. a) Find the shortest paths from ...

1. a) Find the shortest paths from r to all other nodes in the digraph G=(V,E) shown below using the Bellman-Ford algorithm (as taught in class).  Please show your work, and draw t

Definition and fact of the shape of a graph, Definition 1.   Given any ...

Definition 1.   Given any x 1  & x 2   from an interval  I with x 1 2  if f ( x 1 ) 2 ) then f ( x ) is increasing on I. 2.   Given any x 1  & x 2  from an interval

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd