Find out all the critical points for the function, Mathematics

Assignment Help:

Find out all the critical points for the function.

1815_critical points.png

Solution

To determine the derivative it's probably simple to do a little simplification previous to we in fact differentiate.  Let's multiply root through the parenthesis & simplify as much as possible. It will let to ignore using the product rule while taking the derivative.

g (t ) = t (2/3) ( 2t -1) = 2t (5/3)  - t (2/3)

Now differentiate.

g′ (t ) =(10/3)t(2/3) -(2/3)t(-1/3) = 10t(2/3)/3 -(2/3t(1/3))

We will have to be careful with this problem.  While faced along a negative exponent it is frequently best to removes the minus sign in the exponent as we did above.  It isn't actually needed but it can make our life simple on occasion if we do that.

Notice that removal the negative exponent in the second term let us to correctly recognize why t = 0 is a critical point for this function.  Once we move second term to the denominator we can apparently see that the derivative doesn't exist at t = 0 and so this will be a critical point.  If you don't get rid of the -ve exponent in the second term several people will wrongly state that t = 0 is a critical point since the derivative is zero at t = 0 .  Whereas it may seem like a silly point, after all in each of case t = 0 is identified as a critical point, it is occasionally important to know why a point is a critical point.  Actually, in some sections we'll illustrates a fact that only works for critical points wherein the derivative is zero.

Thus, we've found one critical point (where the derivative doesn't present), however now we have to determine where the derivative is zero (provided it is certainly...). To help with this usually it's best to combine the two terms into a single rational expression.  Thus, getting a common denominator & combining gives us,

g′ (t ) =10t-2/3t(1/3)

Notice that still we have t = 0 as a critical point.  Doing this kind of combining has to never lose critical points; it's just being done to help us determine them.  As we can illustrate now it's become much easier to rapidly determine where the derivative will be zero.  Recall as well that a rational expression will just be zero if its numerator is zero

Thus, in this case we can illustrates that the numerator will be zero if t =(1/5) and hence there are two critical points for this function.

t = 0     and t = 1/5


Related Discussions:- Find out all the critical points for the function

Multiplication and division should be learnt intermeshed, E1) Do you agree ...

E1) Do you agree that multiplication and division should be learnt intermeshed with each other, or not? Give reasons for your answer.  E2) How would you explain to children wh

Transportation and assignment problem, what is transportation and assignmen...

what is transportation and assignment problem. give the computer application of transportation and assignment problem

Find the solution to initial value problem, Illustration:   Find the soluti...

Illustration:   Find the solution to the subsequent IVP. ty' + 2y = t 2 - t + 1,      y(1) = ½ Solution : Initially divide via the t to find the differential equation in

Find their present ages of son and father, When the son will be as old as t...

When the son will be as old as the father today their ages will add up to 126 years. When the father was old as the son is today, their ages add upto 38 years.  Find their present

Which expression below is equal to 5, Which expression below is equal to 5?...

Which expression below is equal to 5? The correct order of operations must be used here. PEMDAS tells you in which you should do the operations in the subsequent order: Pare

Classify quadrilaterals, which quadrilaterals have only 1 pair of parallel ...

which quadrilaterals have only 1 pair of parallel sides

Help, How do I solve step by step 7

How do I solve step by step 7

Tent originally sold for $2 what is the percent of discount, A tent origina...

A tent originally sold for $260 and has been marked down to $208. What is the percent of discount? Find out the number of dollars off. $260 - $208 = $52. Further, determine wha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd