Exponential functions, Algebra

Assignment Help:

Definition of an exponential function

If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

                                                     f( x ) = b x

Where b is the base and x is any real number.

Notice that now the x is in the exponent & the base is a fixed number.  It is exactly the opposite through what we've illustrated to this point. To this point the base has been the variable, x in most of the cases, and the exponent was a fixed number.  Though, in spite of these differences these functions evaluate in precisely the similar way as those that we are utilized to. 

Before we get too far into this section we have to address the limitation on b. We ignore one and zero since in this case the function would be,

                             f( x ) = 0x  = 0        and f( x) = 1x  = 1

and these are constant functions & won't have several same properties that general exponential functions have.

Next, we ignore negative numbers so that we don't get any complex values out of the function evaluation.  For example if we allowed b = -4 the function would be,

                                   f(x)=(-4)x            ⇒ f (1/2)=(-4)(1/2)=√(-4)    

and as you can illustrates there are some function evaluations which will give complex numbers. We only desire real numbers to arise from function evaluation & so to ensure of this we need that b not be a negative number.

Now, let's take some graphs.  We will be capable to get most of the properties of exponential functions from these graphs.


Related Discussions:- Exponential functions

College algebra, how to solve the sum of a polynomials

how to solve the sum of a polynomials

Eoc review, three consecutive odd integers such that the s f the first and ...

three consecutive odd integers such that the s f the first and second is 31 less than 3 times the third. find the inters.

cramer''s rule, Solve the following simultaneous equations by using Cramer...

Solve the following simultaneous equations by using Cramer's rule                      3x+2y=13                      2x-y=4

Distance formula, There are two given points ( x 1 ,  y 1 ) and ( x 2 , ...

There are two given points ( x 1 ,  y 1 ) and ( x 2 ,  y 2 ), the distance between these points is prearranged by the formula: Don't allow the subscripts fright you. Th

Solve out inequalities, Solve out following inequalities.  Give both inequa...

Solve out following inequalities.  Give both inequality & interval notation forms for the solution.       -14 Solution -14   -14 0 Don't get excited regar

Multiplying and dividing rational expressions, Step by step help on how to ...

Step by step help on how to solve p to the second power plus 2p-8 over p to the second power-2p+1 multiplied by p-1 over p-2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd