Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Sampling and Pulse Modulation?
In most analog circuits, signals are processed in their entirety. However, in many modern electric systems, especially those that convert waveforms for processing by digital circuits, such as digital computers, only sample values of signals are utilized for processing. Sampling makes it possible to convert an analog signal to discrete form, thereby permitting the use of discrete processing methods. Also, it is possible to sample an electric signal, transmit only the sample values, and use them to interpolate or reconstruct the entire waveform at the destination. Sampling of signals and signal reconstruction from samples have widespread applications in communications and signal processing.
One of the most important results in the analysis of signals is the sampling theorem, which is formally presented later. Many modern signal-processing techniques and the whole family of digital communication methods are based on the validity of this theorem and the insight it provides. The idea leading to the sampling theorem is rather simple and quite intuitive. Let us consider a relatively smooth signal x1(t), which varies slowly and has its main frequency content at low frequencies, as well as a rapidly changing signal x2(t) due to the presence of high-frequency components. Suppose we are to approximate these signals with samples taken at regular intervals, so that linear interpolation of the sampled values can be used to obtain an approximation of the original signals. It is obvious that the sampling interval for the signal x1(t) can be much larger than the sampling interval necessary to reconstruct signal x2(t) with comparable distortion. This is simply a direct consequence of the smoothness of the signal x1(t) compared to x2(t). Therefore, the sampling interval for the signals of smaller bandwidths can be made larger, or the sampling frequency can be made smaller. The sampling theorem is, in fact, a statement of this intuitive reasoning.
Q. A 75-kVA transformer has an iron loss of 1 kW and a full-load copper loss of 1 kW. If the transformer operates on the following load cycle, determine the all-day efficiency:
With the help of neat and clean diagram illustrate the working of Elecro Static Precipitator (ESP). Describe the following: (a) Coal Handling Systems (b) Coal Storage
Q. Explain Multiplexing Systems? A multiplexing system is one in which two or more signals are transmitted jointly over the same transmission channel. There are two commonly us
simplified common base hybrid model
The frequency domain representation of a signal is shown below: i. What are the fundamental frequency and the corresponding period of this signal (shown in Figure )? ii. Pl
Q. For the electromagnet shown in Figure, the λ-i relationship for the normalworking range is given by i = aλ 2 + bλ(x -d) 2 ,where a and b are constants. Determine the force app
Guidelines from Electricity Regulatory Commission The electricity companies have successfully adopted the guidelines issued through ERCs Utilities usually set their yearly KP
The arm of a hydraulic robot is controlled as shown in the block diagram below: The arm dynamics are represented by: Dynamic specification for the arm requires:
Using the coefficients obtained for the noisy signal and the FIR filter in Q1(c)(i) implement on the TMS320VC5510DSK. You can use and modify any of the files provided in the Board
Q. What do you mean by Mantissa? The mantissa , as well known as the significand , represents the precision bits of the number. It is composed of an implied leading bit and t
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd