Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Sampling and Pulse Modulation?
In most analog circuits, signals are processed in their entirety. However, in many modern electric systems, especially those that convert waveforms for processing by digital circuits, such as digital computers, only sample values of signals are utilized for processing. Sampling makes it possible to convert an analog signal to discrete form, thereby permitting the use of discrete processing methods. Also, it is possible to sample an electric signal, transmit only the sample values, and use them to interpolate or reconstruct the entire waveform at the destination. Sampling of signals and signal reconstruction from samples have widespread applications in communications and signal processing.
One of the most important results in the analysis of signals is the sampling theorem, which is formally presented later. Many modern signal-processing techniques and the whole family of digital communication methods are based on the validity of this theorem and the insight it provides. The idea leading to the sampling theorem is rather simple and quite intuitive. Let us consider a relatively smooth signal x1(t), which varies slowly and has its main frequency content at low frequencies, as well as a rapidly changing signal x2(t) due to the presence of high-frequency components. Suppose we are to approximate these signals with samples taken at regular intervals, so that linear interpolation of the sampled values can be used to obtain an approximation of the original signals. It is obvious that the sampling interval for the signal x1(t) can be much larger than the sampling interval necessary to reconstruct signal x2(t) with comparable distortion. This is simply a direct consequence of the smoothness of the signal x1(t) compared to x2(t). Therefore, the sampling interval for the signals of smaller bandwidths can be made larger, or the sampling frequency can be made smaller. The sampling theorem is, in fact, a statement of this intuitive reasoning.
The Thevenin equivalent circuit at the terminals of R2 / S for a 60 hz, 6 pole induction motor is shown below. a) Find the value of the slip for maximum torque and the maximum t
Q. A paraboloidal antenna has an aperture ef?ciency of 0.6 and a diameter D = 100λ at 6 GHz. Illumination by the feed is such that the beamwidths of the principal-plane secondary p
Q. Explain the frequency response curve of a RC coupled amplifier The frequency response curve of a typical RC coupled Amplifier is shown below: In mid frequency range
I need help designing a BJT amplifier with that meets the following parameters: voltage gain greater than 300, Ic(Vce=0)=2uA, Vcc=20V.
What is the use of terminal count register? Each of the four DMA channels of 8257 has single terminal count register. This 16-bit register is used for ascertaining that the dat
Explain the CMP instruction . CMP: The comparison instruction is a subtraction which changes only the flag bits; the destination operand certainly not changes. A comparison is h
problems on zener diode
Explain How to Represent Power Lines? The equivalent circuit of a power line depends on the length of the line and on the accuracy of the model required. In general, any power
A data hold is to be constructed that reconstructs the sampled signal by the straight-line approximation shown in Figure. Note that this device is a polygonal data hold with a dela
Forward Voltage Triggering If V a is increased the collector to emitter voltages of both transistor are also increased. Hence the leakage current at J 2 increase. This
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd