Explain effect of impurity on conductivity of semiconductor, Electrical Engineering

Assignment Help:

Explain the effect of impurity on the conductivity of a semiconductor.

To form a semi-conductor conductive, a small amount of appropriate impurity is added. This is then termed as extrinsic semi-conductor. Depending on the kind of impurity added, extrinsic semi-conductor might be categorized n-type and p-type semi-conductor.

n-type semi-conductor: The addition of pentavalent impurity as antimony and arsenic give many of free electrons in the semi-conductor crystal. These types of impurities, that produce n-type semi-conductors, are called donor impurities, as each atom of them donates one free electron to semi-conductor crystal. While an electric field is applied to a crystal of n-type material consisting of sufficient donor impurity the effect of the donor electrons is extremely predominant than the effect of electron hole pairs achieved through the breaking of the covalent bonds. The Fermi level of an n-type semi-conductor arises in the forbidden energy gap although near to the bottom of the conduction band.

p-type semi-conductor: While a trivalent impurity such as indium, gallium are added to a semi- conductor, many of holes are created and the semi-conductor formed is called p- type semi-conductor. These impurities that produce p-type semi-conductor, are termed as acceptor impurities. Now conduction is using positive holes. The Fermi level in that case arises near the top of the valence bonds into the forbidden energy gap.


Related Discussions:- Explain effect of impurity on conductivity of semiconductor

Output impedance, Now that you have the input and output impedances you can...

Now that you have the input and output impedances you can design the matching networks. I will require either the Smith Charts showing how you calculated the matching components or

Express the storedmagnetic energy, A relay is essentially an electromechani...

A relay is essentially an electromechanical switch that opens and closes electrical contacts. A simplified relay is represented in Figure. It is required to keep the fenomagnetic p

Determine overall power factor of the combined load, Q. Two balanced, three...

Q. Two balanced, three-phase, wye-connected loads are in parallel across a balanced, three-phase supply. Load 1 draws 15 kVA at 0.8 power factor lagging, and load 2 draws 20 kVA at

Synchronization, Synchronization:  Whatever type of weep is used, it must ...

Synchronization:  Whatever type of weep is used, it must be synchronized with the signal being measured. Synchronization has to be done to obtain a stationary pattern. This requir

Find temperature coefficient of resistance in semiconductors, Semi-conducto...

Semi-conductors have temperature coefficient of resistance.  (A) Negative                                    (B) Positive (C) Both positive and negative        (D) none o

Illustrate working of direct-coupled amplifiers, Q. Illustrate working of D...

Q. Illustrate working of Direct-coupled Amplifiers? Direct-coupled Amplifiers : The following figure shows a direct-coupled amplifier consisting of two stages. A dc voltage i

Expain different control function categories, Q. Expain different control f...

Q. Expain different control function categories,And also discuss that how they help in signalling and control. Ans: In some switching systems, Control subsystem may be a

Net force on the wire due to the interaction of the b-field, Q. (a) Show by...

Q. (a) Show by applying Ampere's circuital law that themagnetic field associated with a long straight, current-carrying wire is given by B φ = µ 0 I/(2πr), where the subscript φ d

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd