Example of synthetic division, Algebra

Assignment Help:

Using synthetic division do following  divisions.

Divide 2x3 - 3x - 5  by x + 2

Solution

Okay in this case we have to be a little careful here. We have to divide by a term in the form x - r in order for this to work & that minus sign is absolutely needed.  Thus, we're first going to need to write x + 2 as,

                                             x+ 2 = x - ( -2)

and in doing thus we can see that r = -2 .

Now we can do synthetic division & this time we'll just put up the results & leave it to you to verify all the actual numbers.

7_Example of synthetic division.png

Thus, in this case we have,

2 x3 - 3x - 5 =( x+ 2)(2 x2 - 4 x + 5) -15

So, just why are we doing this? One answer is that, down the road in a later section, we are going to wish for get our hands on the Q(x).  Just why we might want to do that will have to wait for an explanation until we get to that point.

Let's start out with the division algorithm.

                                         P ( x)=( x - r ) Q ( x )+ R

Now, let's evaluate the polynomial P(x) at r.  If here we had an actual polynomial we could evaluate P(x) directly for sure, but let's employ the division algorithm and see what we get,

            P ( r)=( r - r) Q ( r )+ R

                      =(0) Q ( r)+ R

                             = R

Now, that's suitable. The remainder of division algorithm is also the value of the polynomial evaluated at r. thus, from our earlier examples now we know the following function evaluations.

If P ( x)= 5x3 - x2+ 6 then P ( 4) =310

If P ( x)= 2 x3 - 3x - 5 then P ( -2)=-15

If P ( x ) = 4 x4 -10 x2 + 1 then P (6)= 4825

It is a very quick method for evaluating polynomials.  For polynomials along with only a few terms and/or polynomials along "small" degree it may not be much quicker that directly evaluating them.  Though, if there are several terms in the polynomial & they contain large degrees it can be much quicker & much less prone to mistakes than calculating them directly.


Related Discussions:- Example of synthetic division

Solve 3x3 systems, how do I solve these types of equations?

how do I solve these types of equations?

1, I am 13 years old and I really need help in my Pre-Alg class

I am 13 years old and I really need help in my Pre-Alg class

Word help, Nel skates at 18 mph and and Christine skates at 22 mph if they ...

Nel skates at 18 mph and and Christine skates at 22 mph if they can keep up that pace for 4.5 hours how far will they be a part at the end of the time

Substitution method, how do you change this (x+2y=10) equation into "y" for...

how do you change this (x+2y=10) equation into "y" form ?

Percent, coffee was 2.50 yesterday and 2.85 today. what percent did it go u...

coffee was 2.50 yesterday and 2.85 today. what percent did it go up?

Function composition, Now we need to discuss the new method of combining fu...

Now we need to discuss the new method of combining functions. The new way of combining functions is called function composition. Following is the definition. Given two functions

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd