Example of inflection point - set theory and calculus, Mathematics

Assignment Help:

Need help, Determine the points of inflection on the curve of the function

y = x3

 


Related Discussions:- Example of inflection point - set theory and calculus

Analysis and optimization, 1. In an in finite horizon capital/consumption m...

1. In an in finite horizon capital/consumption model, if kt and ct are the capital stock and consumption at time t, we have f(kt) = ct+kt+1 for t ≥ 0 where f is a given production

Unit rates with fractions, a math problem that involves the numbers $112 fo...

a math problem that involves the numbers $112 for 8 hours

How many hours does dee work, Susan begins work at 4:00 and Dee starts at 5...

Susan begins work at 4:00 and Dee starts at 5:00. They both finish at the similar time. If Susan works x hours, how many hours does Dee work? Since Susan started 1 hour before

Given a differential equation will a solution exist?, All differential equa...

All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Las leyes de kepler, la expresión que permite calcular el radio medio de la...

la expresión que permite calcular el radio medio de la órbita de cada planeta es?

Aliena

2/13/2013 12:24:41 AM

hey try this...

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd